ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemmo GIF version

Theorem iseqf1olemmo 10265
Description: Lemma for seq3f1o 10277. Showing that 𝑄 is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemmo.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemmo.b (𝜑𝐵 ∈ (𝑀...𝑁))
iseqf1olemmo.eq (𝜑 → (𝑄𝐴) = (𝑄𝐵))
Assertion
Ref Expression
iseqf1olemmo (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemmo
StepHypRef Expression
1 iseqf1olemqf.k . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
21ad2antrr 479 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqf.j . . . . 5 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
43ad2antrr 479 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 iseqf1olemmo.a . . . . 5 (𝜑𝐴 ∈ (𝑀...𝑁))
65ad2antrr 479 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝑀...𝑁))
7 iseqf1olemmo.b . . . . 5 (𝜑𝐵 ∈ (𝑀...𝑁))
87ad2antrr 479 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝑀...𝑁))
9 iseqf1olemmo.eq . . . . 5 (𝜑 → (𝑄𝐴) = (𝑄𝐵))
109ad2antrr 479 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝑄𝐴) = (𝑄𝐵))
11 iseqf1olemqf.q . . . 4 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
12 simplr 519 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
13 simpr 109 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝐾...(𝐽𝐾)))
142, 4, 6, 8, 10, 11, 12, 13iseqf1olemab 10262 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
15 simplr 519 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
16 simpr 109 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
1715, 16jca 304 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
181, 3, 5, 7, 9, 11iseqf1olemnab 10261 . . . . 5 (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
1918ad2antrr 479 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
2017, 19pm2.21dd 609 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
21 elfzelz 9806 . . . . . . 7 (𝐵 ∈ (𝑀...𝑁) → 𝐵 ∈ ℤ)
227, 21syl 14 . . . . . 6 (𝜑𝐵 ∈ ℤ)
23 elfzelz 9806 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
241, 23syl 14 . . . . . 6 (𝜑𝐾 ∈ ℤ)
25 f1ocnv 5380 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
26 f1of 5367 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
273, 25, 263syl 17 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
2827, 1ffvelrnd 5556 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
29 elfzelz 9806 . . . . . . 7 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3028, 29syl 14 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ ℤ)
31 fzdcel 9820 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐵 ∈ (𝐾...(𝐽𝐾)))
3222, 24, 30, 31syl3anc 1216 . . . . 5 (𝜑DECID 𝐵 ∈ (𝐾...(𝐽𝐾)))
33 exmiddc 821 . . . . 5 (DECID 𝐵 ∈ (𝐾...(𝐽𝐾)) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3432, 33syl 14 . . . 4 (𝜑 → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3534adantr 274 . . 3 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3614, 20, 35mpjaodan 787 . 2 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
37 simpr 109 . . . . 5 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝐾...(𝐽𝐾)))
38 simplr 519 . . . . 5 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
3937, 38jca 304 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
409eqcomd 2145 . . . . . 6 (𝜑 → (𝑄𝐵) = (𝑄𝐴))
411, 3, 7, 5, 40, 11iseqf1olemnab 10261 . . . . 5 (𝜑 → ¬ (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
4241ad2antrr 479 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
4339, 42pm2.21dd 609 . . 3 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
441ad2antrr 479 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐾 ∈ (𝑀...𝑁))
453ad2antrr 479 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
465ad2antrr 479 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝑀...𝑁))
477ad2antrr 479 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝑀...𝑁))
489ad2antrr 479 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝑄𝐴) = (𝑄𝐵))
49 simplr 519 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
50 simpr 109 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
5144, 45, 46, 47, 48, 11, 49, 50iseqf1olemnanb 10263 . . 3 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
5234adantr 274 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
5343, 51, 52mpjaodan 787 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
54 elfzelz 9806 . . . . 5 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ)
555, 54syl 14 . . . 4 (𝜑𝐴 ∈ ℤ)
56 fzdcel 9820 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
5755, 24, 30, 56syl3anc 1216 . . 3 (𝜑DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
58 exmiddc 821 . . 3 (DECID 𝐴 ∈ (𝐾...(𝐽𝐾)) → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
5957, 58syl 14 . 2 (𝜑 → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
6036, 53, 59mpjaodan 787 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  ifcif 3474  cmpt 3989  ccnv 4538  wf 5119  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  1c1 7621  cmin 7933  cz 9054  ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by:  iseqf1olemqf1o  10266
  Copyright terms: Public domain W3C validator