![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzelz | GIF version |
Description: A member of a finite set of sequential integer is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzelz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9117 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzelz 8709 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 ‘cfv 4932 (class class class)co 5543 ℤcz 8432 ℤ≥cuz 8700 ...cfz 9105 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-mpt 3849 df-id 4056 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-fv 4940 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-neg 7349 df-z 8433 df-uz 8701 df-fz 9106 |
This theorem is referenced by: elfz1eq 9130 fzsplit2 9145 fzdisj 9147 elfznn 9149 fznatpl1 9169 fzdifsuc 9174 fzrev2i 9179 fzrev3i 9181 elfzp12 9192 fznuz 9195 fzrevral 9198 fzshftral 9201 fznn0sub2 9216 elfzmlbm 9219 difelfznle 9223 fzosplit 9263 isermono 9553 bcval2 9774 bcval4 9776 bccmpl 9778 bcp1nk 9786 bcpasc 9790 bccl2 9792 isumrblem 10337 fzm1ndvds 10401 lcmval 10589 lcmcllem 10593 lcmledvds 10596 prmdvdsfz 10664 |
Copyright terms: Public domain | W3C validator |