ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt0neg2 GIF version

Theorem lt0neg2 8234
Description: Comparison of a number and its negative to zero. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
lt0neg2 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0))

Proof of Theorem lt0neg2
StepHypRef Expression
1 0re 7769 . . 3 0 ∈ ℝ
2 ltneg 8227 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ -𝐴 < -0))
31, 2mpan 420 . 2 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < -0))
4 neg0 8011 . . 3 -0 = 0
54breq2i 3937 . 2 (-𝐴 < -0 ↔ -𝐴 < 0)
63, 5syl6bb 195 1 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1480   class class class wbr 3929  cr 7622  0cc0 7623   < clt 7803  -cneg 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7805  df-mnf 7806  df-ltxr 7808  df-sub 7938  df-neg 7939
This theorem is referenced by:  lt0neg2d  8281  elnnz  9067  sincos2sgn  11475  coseq00topi  12919  coseq0negpitopi  12920
  Copyright terms: Public domain W3C validator