ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul0inf GIF version

Theorem mul0inf 11015
Description: Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 10837 and mulap0bd 8421 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
Assertion
Ref Expression
mul0inf ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0))

Proof of Theorem mul0inf
StepHypRef Expression
1 mulcl 7750 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
2 0cnd 7762 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ∈ ℂ)
3 simpl 108 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
43abscld 10956 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℝ)
5 simpr 109 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
65abscld 10956 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
7 mincl 11005 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℝ)
84, 6, 7syl2anc 408 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℝ)
98recnd 7797 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℂ)
103absge0d 10959 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐴))
115absge0d 10959 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐵))
12 0red 7770 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ∈ ℝ)
13 lemininf 11008 . . . . . 6 ((0 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → (0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 ≤ (abs‘𝐴) ∧ 0 ≤ (abs‘𝐵))))
1412, 4, 6, 13syl3anc 1216 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 ≤ (abs‘𝐴) ∧ 0 ≤ (abs‘𝐵))))
1510, 11, 14mpbir2and 928 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ))
16 ap0gt0 8405 . . . 4 ((inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℝ ∧ 0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < )) → (inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) # 0 ↔ 0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < )))
178, 15, 16syl2anc 408 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) # 0 ↔ 0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < )))
18 absgt0ap 10874 . . . . 5 (𝐴 ∈ ℂ → (𝐴 # 0 ↔ 0 < (abs‘𝐴)))
19 absgt0ap 10874 . . . . 5 (𝐵 ∈ ℂ → (𝐵 # 0 ↔ 0 < (abs‘𝐵)))
2018, 19bi2anan9 595 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (0 < (abs‘𝐴) ∧ 0 < (abs‘𝐵))))
21 ltmininf 11009 . . . . 5 ((0 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → (0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 < (abs‘𝐴) ∧ 0 < (abs‘𝐵))))
2212, 4, 6, 21syl3anc 1216 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 < (abs‘𝐴) ∧ 0 < (abs‘𝐵))))
2320, 22bitr4d 190 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ 0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < )))
24 mulap0b 8419 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0))
2517, 23, 243bitr2rd 216 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) # 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) # 0))
261, 2, 9, 2, 25apcon4bid 8389 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {cpr 3528   class class class wbr 3929  cfv 5123  (class class class)co 5774  infcinf 6870  cc 7621  cr 7622  0cc0 7623   · cmul 7628   < clt 7803  cle 7804   # cap 8346  abscabs 10772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-rp 9445  df-seqfrec 10222  df-exp 10296  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator