![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lemininf | GIF version |
Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.) |
Ref | Expression |
---|---|
lemininf | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 940 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) | |
2 | simp3 941 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
3 | minmax 10313 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ, < ) = -sup({-𝐵, -𝐶}, ℝ, < )) | |
4 | 1, 2, 3 | syl2anc 403 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ, < ) = -sup({-𝐵, -𝐶}, ℝ, < )) |
5 | 4 | breq2d 3817 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ, < ) ↔ 𝐴 ≤ -sup({-𝐵, -𝐶}, ℝ, < ))) |
6 | 1 | renegcld 7603 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐵 ∈ ℝ) |
7 | 2 | renegcld 7603 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐶 ∈ ℝ) |
8 | maxcl 10297 | . . . 4 ⊢ ((-𝐵 ∈ ℝ ∧ -𝐶 ∈ ℝ) → sup({-𝐵, -𝐶}, ℝ, < ) ∈ ℝ) | |
9 | 6, 7, 8 | syl2anc 403 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → sup({-𝐵, -𝐶}, ℝ, < ) ∈ ℝ) |
10 | simp1 939 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) | |
11 | lenegcon2 7690 | . . 3 ⊢ ((sup({-𝐵, -𝐶}, ℝ, < ) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (sup({-𝐵, -𝐶}, ℝ, < ) ≤ -𝐴 ↔ 𝐴 ≤ -sup({-𝐵, -𝐶}, ℝ, < ))) | |
12 | 9, 10, 11 | syl2anc 403 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({-𝐵, -𝐶}, ℝ, < ) ≤ -𝐴 ↔ 𝐴 ≤ -sup({-𝐵, -𝐶}, ℝ, < ))) |
13 | 10 | renegcld 7603 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐴 ∈ ℝ) |
14 | maxleastb 10301 | . . . 4 ⊢ ((-𝐵 ∈ ℝ ∧ -𝐶 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (sup({-𝐵, -𝐶}, ℝ, < ) ≤ -𝐴 ↔ (-𝐵 ≤ -𝐴 ∧ -𝐶 ≤ -𝐴))) | |
15 | 6, 7, 13, 14 | syl3anc 1170 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({-𝐵, -𝐶}, ℝ, < ) ≤ -𝐴 ↔ (-𝐵 ≤ -𝐴 ∧ -𝐶 ≤ -𝐴))) |
16 | 10, 1 | lenegd 7743 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
17 | 10, 2 | lenegd 7743 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ -𝐶 ≤ -𝐴)) |
18 | 16, 17 | anbi12d 457 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶) ↔ (-𝐵 ≤ -𝐴 ∧ -𝐶 ≤ -𝐴))) |
19 | 15, 18 | bitr4d 189 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({-𝐵, -𝐶}, ℝ, < ) ≤ -𝐴 ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
20 | 5, 12, 19 | 3bitr2d 214 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 {cpr 3417 class class class wbr 3805 supcsup 6489 infcinf 6490 ℝcr 7094 < clt 7267 ≤ cle 7268 -cneg 7399 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-mulrcl 7189 ax-addcom 7190 ax-mulcom 7191 ax-addass 7192 ax-mulass 7193 ax-distr 7194 ax-i2m1 7195 ax-0lt1 7196 ax-1rid 7197 ax-0id 7198 ax-rnegex 7199 ax-precex 7200 ax-cnre 7201 ax-pre-ltirr 7202 ax-pre-ltwlin 7203 ax-pre-lttrn 7204 ax-pre-apti 7205 ax-pre-ltadd 7206 ax-pre-mulgt0 7207 ax-pre-mulext 7208 ax-arch 7209 ax-caucvg 7210 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-if 3369 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-po 4079 df-iso 4080 df-iord 4149 df-on 4151 df-ilim 4152 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-isom 4961 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-1st 5818 df-2nd 5819 df-recs 5974 df-frec 6060 df-sup 6491 df-inf 6492 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-sub 7400 df-neg 7401 df-reap 7794 df-ap 7801 df-div 7880 df-inn 8159 df-2 8217 df-3 8218 df-4 8219 df-n0 8408 df-z 8485 df-uz 8753 df-rp 8868 df-iseq 9574 df-iexp 9625 df-cj 9930 df-re 9931 df-im 9932 df-rsqrt 10085 df-abs 10086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |