![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > n2dvds3 | GIF version |
Description: 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
n2dvds3 | ⊢ ¬ 2 ∥ 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 8449 | . . . 4 ⊢ 2 ∈ ℤ | |
2 | iddvds 10342 | . . . 4 ⊢ (2 ∈ ℤ → 2 ∥ 2) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ 2 ∥ 2 |
4 | 3m1e2 8214 | . . 3 ⊢ (3 − 1) = 2 | |
5 | 3, 4 | breqtrri 3812 | . 2 ⊢ 2 ∥ (3 − 1) |
6 | 3z 8450 | . . 3 ⊢ 3 ∈ ℤ | |
7 | oddm1even 10408 | . . 3 ⊢ (3 ∈ ℤ → (¬ 2 ∥ 3 ↔ 2 ∥ (3 − 1))) | |
8 | 6, 7 | ax-mp 7 | . 2 ⊢ (¬ 2 ∥ 3 ↔ 2 ∥ (3 − 1)) |
9 | 5, 8 | mpbir 144 | 1 ⊢ ¬ 2 ∥ 3 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 103 ∈ wcel 1434 class class class wbr 3787 (class class class)co 5537 1c1 7033 − cmin 7335 2c2 8145 3c3 8146 ℤcz 8421 ∥ cdvds 10329 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-mulrcl 7126 ax-addcom 7127 ax-mulcom 7128 ax-addass 7129 ax-mulass 7130 ax-distr 7131 ax-i2m1 7132 ax-0lt1 7133 ax-1rid 7134 ax-0id 7135 ax-rnegex 7136 ax-precex 7137 ax-cnre 7138 ax-pre-ltirr 7139 ax-pre-ltwlin 7140 ax-pre-lttrn 7141 ax-pre-apti 7142 ax-pre-ltadd 7143 ax-pre-mulgt0 7144 ax-pre-mulext 7145 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-xor 1308 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-br 3788 df-opab 3842 df-id 4050 df-po 4053 df-iso 4054 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-iota 4891 df-fun 4928 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 df-sub 7337 df-neg 7338 df-reap 7731 df-ap 7738 df-div 7817 df-inn 8096 df-2 8154 df-3 8155 df-n0 8345 df-z 8422 df-dvds 10330 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |