ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negdi2 GIF version

Theorem negdi2 7469
Description: Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
negdi2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴𝐵))

Proof of Theorem negdi2
StepHypRef Expression
1 negdi 7468 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
2 negcl 7411 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
3 negsub 7459 . . 3 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + -𝐵) = (-𝐴𝐵))
42, 3sylan 277 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 + -𝐵) = (-𝐴𝐵))
51, 4eqtrd 2115 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  (class class class)co 5564  cc 7077   + caddc 7082  cmin 7382  -cneg 7383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-setind 4309  ax-resscn 7166  ax-1cn 7167  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-addcom 7174  ax-addass 7176  ax-distr 7178  ax-i2m1 7179  ax-0id 7182  ax-rnegex 7183  ax-cnre 7185
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-iota 4918  df-fun 4955  df-fv 4961  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-sub 7384  df-neg 7385
This theorem is referenced by:  negdi2d  7536  ex-fl  10807
  Copyright terms: Public domain W3C validator