ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnegmod GIF version

Theorem qnegmod 10142
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
qnegmod ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))

Proof of Theorem qnegmod
StepHypRef Expression
1 qcn 9426 . . . . . 6 (𝑁 ∈ ℚ → 𝑁 ∈ ℂ)
213ad2ant2 1003 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℂ)
3 qcn 9426 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
433ad2ant1 1002 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝐴 ∈ ℂ)
52, 4negsubd 8079 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 + -𝐴) = (𝑁𝐴))
65eqcomd 2145 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁𝐴) = (𝑁 + -𝐴))
76oveq1d 5789 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑁𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
82mulid2d 7784 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) = 𝑁)
98oveq1d 5789 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (𝑁 + -𝐴))
109oveq1d 5789 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
11 1cnd 7782 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℂ)
1211, 2mulcld 7786 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (1 · 𝑁) ∈ ℂ)
13 qnegcl 9428 . . . . . . 7 (𝐴 ∈ ℚ → -𝐴 ∈ ℚ)
14 qcn 9426 . . . . . . 7 (-𝐴 ∈ ℚ → -𝐴 ∈ ℂ)
1513, 14syl 14 . . . . . 6 (𝐴 ∈ ℚ → -𝐴 ∈ ℂ)
16153ad2ant1 1002 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℂ)
1712, 16addcomd 7913 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((1 · 𝑁) + -𝐴) = (-𝐴 + (1 · 𝑁)))
1817oveq1d 5789 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((-𝐴 + (1 · 𝑁)) mod 𝑁))
19133ad2ant1 1002 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → -𝐴 ∈ ℚ)
20 1zzd 9081 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 1 ∈ ℤ)
21 simp2 982 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 𝑁 ∈ ℚ)
22 simp3 983 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → 0 < 𝑁)
23 modqcyc 10132 . . . 4 (((-𝐴 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2419, 20, 21, 22, 23syl22anc 1217 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2518, 24eqtrd 2172 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((1 · 𝑁) + -𝐴) mod 𝑁) = (-𝐴 mod 𝑁))
267, 10, 253eqtr2rd 2179 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  (class class class)co 5774  cc 7618  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cmin 7933  -cneg 7934  cz 9054  cq 9411   mod cmo 10095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412  df-rp 9442  df-fl 10043  df-mod 10096
This theorem is referenced by:  m1modnnsub1  10143
  Copyright terms: Public domain W3C validator