ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1zzd GIF version

Theorem 1zzd 8459
Description: 1 is an integer, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
Assertion
Ref Expression
1zzd (𝜑 → 1 ∈ ℤ)

Proof of Theorem 1zzd
StepHypRef Expression
1 1z 8458 . 2 1 ∈ ℤ
21a1i 9 1 (𝜑 → 1 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1434  1c1 7044  cz 8432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-z 8433
This theorem is referenced by:  uzm1  8730  elfz1b  9183  fzm1  9193  fzoss2  9258  fzo1fzo0n0  9269  qnegmod  9451  addmodid  9454  q2submod  9467  isermono  9553  expivallem  9574  exp1  9579  facnn  9751  fac0  9752  fac1  9753  bcp1nk  9786  sizefiv01gt1  9806  fseq1size  9825  resqrexlemf  10031  resqrexlemf1  10032  resqrexlemnmsq  10041  resqrexlemcvg  10043  climuni  10270  climrecvg1n  10323  climcvg1nlem  10324  nn0o1gt2  10449  gcdsupex  10493  gcdsupcl  10494  gcdaddm  10519  lcmval  10589  lcmcllem  10593  lcmledvds  10596  isprm3  10644  isprm4  10645  prmind2  10646  dvdsnprmd  10651  rpexp  10676  pw2dvds  10688
  Copyright terms: Public domain W3C validator