ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfunexg GIF version

Theorem resfunexg 5409
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem resfunexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funres 4968 . . . . 5 (Fun 𝐴 → Fun (𝐴𝐵))
2 funfvex 5219 . . . . . 6 ((Fun (𝐴𝐵) ∧ 𝑥 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑥) ∈ V)
32ralrimiva 2409 . . . . 5 (Fun (𝐴𝐵) → ∀𝑥 ∈ dom (𝐴𝐵)((𝐴𝐵)‘𝑥) ∈ V)
4 fnasrng 5370 . . . . 5 (∀𝑥 ∈ dom (𝐴𝐵)((𝐴𝐵)‘𝑥) ∈ V → (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
51, 3, 43syl 17 . . . 4 (Fun 𝐴 → (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
65adantr 265 . . 3 ((Fun 𝐴𝐵𝐶) → (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
71adantr 265 . . . . 5 ((Fun 𝐴𝐵𝐶) → Fun (𝐴𝐵))
8 funfn 4958 . . . . 5 (Fun (𝐴𝐵) ↔ (𝐴𝐵) Fn dom (𝐴𝐵))
97, 8sylib 131 . . . 4 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) Fn dom (𝐴𝐵))
10 dffn5im 5246 . . . 4 ((𝐴𝐵) Fn dom (𝐴𝐵) → (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
119, 10syl 14 . . 3 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
12 imadmrn 4705 . . . . 5 ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
13 vex 2577 . . . . . . . . 9 𝑥 ∈ V
14 opexgOLD 3992 . . . . . . . . 9 ((𝑥 ∈ V ∧ ((𝐴𝐵)‘𝑥) ∈ V) → ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V)
1513, 2, 14sylancr 399 . . . . . . . 8 ((Fun (𝐴𝐵) ∧ 𝑥 ∈ dom (𝐴𝐵)) → ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V)
1615ralrimiva 2409 . . . . . . 7 (Fun (𝐴𝐵) → ∀𝑥 ∈ dom (𝐴𝐵)⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V)
17 dmmptg 4845 . . . . . . 7 (∀𝑥 ∈ dom (𝐴𝐵)⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V → dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = dom (𝐴𝐵))
181, 16, 173syl 17 . . . . . 6 (Fun 𝐴 → dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = dom (𝐴𝐵))
1918imaeq2d 4695 . . . . 5 (Fun 𝐴 → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)))
2012, 19syl5reqr 2103 . . . 4 (Fun 𝐴 → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
2120adantr 265 . . 3 ((Fun 𝐴𝐵𝐶) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
226, 11, 213eqtr4d 2098 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)))
23 funmpt 4965 . . 3 Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
24 dmresexg 4661 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
2524adantl 266 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
26 funimaexg 5010 . . 3 ((Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) ∧ dom (𝐴𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2723, 25, 26sylancr 399 . 2 ((Fun 𝐴𝐵𝐶) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2822, 27eqeltrd 2130 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wral 2323  Vcvv 2574  cop 3405  cmpt 3845  dom cdm 4372  ran crn 4373  cres 4374  cima 4375  Fun wfun 4923   Fn wfn 4924  cfv 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937
This theorem is referenced by:  fnex  5410  ofexg  5743  cofunexg  5765  rdgivallem  5998  frecex  6011  frecsuclem3  6020
  Copyright terms: Public domain W3C validator