Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  resoprab GIF version

Theorem resoprab 5624
 Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
resoprab ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem resoprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 resopab 4679 . . 3 ({⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↾ (𝐴 × 𝐵)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
2 19.42vv 1804 . . . . 5 (∃𝑥𝑦(𝑤 ∈ (𝐴 × 𝐵) ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑤 ∈ (𝐴 × 𝐵) ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
3 an12 503 . . . . . . 7 ((𝑤 ∈ (𝐴 × 𝐵) ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)))
4 eleq1 2116 . . . . . . . . . 10 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
5 opelxp 4401 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
64, 5syl6bb 189 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
76anbi1d 446 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
87pm5.32i 435 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
93, 8bitri 177 . . . . . 6 ((𝑤 ∈ (𝐴 × 𝐵) ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
1092exbii 1513 . . . . 5 (∃𝑥𝑦(𝑤 ∈ (𝐴 × 𝐵) ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
112, 10bitr3i 179 . . . 4 ((𝑤 ∈ (𝐴 × 𝐵) ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
1211opabbii 3851 . . 3 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))}
131, 12eqtri 2076 . 2 ({⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↾ (𝐴 × 𝐵)) = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))}
14 dfoprab2 5579 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
1514reseq1i 4635 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = ({⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↾ (𝐴 × 𝐵))
16 dfoprab2 5579 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))}
1713, 15, 163eqtr4i 2086 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
 Colors of variables: wff set class Syntax hints:   ∧ wa 101   = wceq 1259  ∃wex 1397   ∈ wcel 1409  ⟨cop 3405  {copab 3844   × cxp 4370   ↾ cres 4374  {coprab 5540 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-opab 3846  df-xp 4378  df-rel 4379  df-res 4384  df-oprab 5543 This theorem is referenced by:  resoprab2  5625
 Copyright terms: Public domain W3C validator