![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > shftfib | GIF version |
Description: Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftfib | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfval.1 | . . . . . . 7 ⊢ 𝐹 ∈ V | |
2 | 1 | shftfval 9910 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
3 | 2 | breqd 3816 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐵(𝐹 shift 𝐴)𝑧 ↔ 𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧)) |
4 | vex 2613 | . . . . . 6 ⊢ 𝑧 ∈ V | |
5 | eleq1 2145 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ)) | |
6 | oveq1 5570 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 − 𝐴) = (𝐵 − 𝐴)) | |
7 | 6 | breq1d 3815 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → ((𝑥 − 𝐴)𝐹𝑦 ↔ (𝐵 − 𝐴)𝐹𝑦)) |
8 | 5, 7 | anbi12d 457 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑦))) |
9 | breq2 3809 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝐵 − 𝐴)𝐹𝑦 ↔ (𝐵 − 𝐴)𝐹𝑧)) | |
10 | 9 | anbi2d 452 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
11 | eqid 2083 | . . . . . . 7 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} | |
12 | 8, 10, 11 | brabg 4052 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑧 ∈ V) → (𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
13 | 4, 12 | mpan2 416 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
14 | 3, 13 | sylan9bb 450 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
15 | ibar 295 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((𝐵 − 𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) | |
16 | 15 | adantl 271 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 − 𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
17 | 14, 16 | bitr4d 189 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 − 𝐴)𝐹𝑧)) |
18 | 17 | abbidv 2200 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧} = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) |
19 | imasng 4740 | . . 3 ⊢ (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧}) | |
20 | 19 | adantl 271 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧}) |
21 | simpr 108 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
22 | simpl 107 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
23 | 21, 22 | subcld 7538 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − 𝐴) ∈ ℂ) |
24 | imasng 4740 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℂ → (𝐹 “ {(𝐵 − 𝐴)}) = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) | |
25 | 23, 24 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 “ {(𝐵 − 𝐴)}) = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) |
26 | 18, 20, 25 | 3eqtr4d 2125 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 {cab 2069 Vcvv 2610 {csn 3416 class class class wbr 3805 {copab 3858 “ cima 4394 (class class class)co 5563 ℂcc 7093 − cmin 7398 shift cshi 9903 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-resscn 7182 ax-1cn 7183 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-addcom 7190 ax-addass 7192 ax-distr 7194 ax-i2m1 7195 ax-0id 7198 ax-rnegex 7199 ax-cnre 7201 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-sub 7400 df-shft 9904 |
This theorem is referenced by: shftval 9914 |
Copyright terms: Public domain | W3C validator |