Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfib GIF version

Theorem shftfib 9912
 Description: Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfib ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))

Proof of Theorem shftfib
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . 7 𝐹 ∈ V
21shftfval 9910 . . . . . 6 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
32breqd 3816 . . . . 5 (𝐴 ∈ ℂ → (𝐵(𝐹 shift 𝐴)𝑧𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧))
4 vex 2613 . . . . . 6 𝑧 ∈ V
5 eleq1 2145 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ))
6 oveq1 5570 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
76breq1d 3815 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑦))
85, 7anbi12d 457 . . . . . . 7 (𝑥 = 𝐵 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦)))
9 breq2 3809 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐵𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑧))
109anbi2d 452 . . . . . . 7 (𝑦 = 𝑧 → ((𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
11 eqid 2083 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
128, 10, 11brabg 4052 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ V) → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
134, 12mpan2 416 . . . . 5 (𝐵 ∈ ℂ → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
143, 13sylan9bb 450 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
15 ibar 295 . . . . 5 (𝐵 ∈ ℂ → ((𝐵𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
1615adantl 271 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
1714, 16bitr4d 189 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵𝐴)𝐹𝑧))
1817abbidv 2200 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {𝑧𝐵(𝐹 shift 𝐴)𝑧} = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
19 imasng 4740 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
2019adantl 271 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
21 simpr 108 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
22 simpl 107 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2321, 22subcld 7538 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
24 imasng 4740 . . 3 ((𝐵𝐴) ∈ ℂ → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2523, 24syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2618, 20, 253eqtr4d 2125 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   = wceq 1285   ∈ wcel 1434  {cab 2069  Vcvv 2610  {csn 3416   class class class wbr 3805  {copab 3858   “ cima 4394  (class class class)co 5563  ℂcc 7093   − cmin 7398   shift cshi 9903 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-resscn 7182  ax-1cn 7183  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-sub 7400  df-shft 9904 This theorem is referenced by:  shftval  9914
 Copyright terms: Public domain W3C validator