ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinperlem GIF version

Theorem sinperlem 12889
Description: Lemma for sinper 12890 and cosper 12891. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
sinperlem.1 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
sinperlem.2 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
Assertion
Ref Expression
sinperlem ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))

Proof of Theorem sinperlem
StepHypRef Expression
1 zcn 9059 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 2cn 8791 . . . . . . . . . 10 2 ∈ ℂ
3 picn 12868 . . . . . . . . . 10 π ∈ ℂ
42, 3mulcli 7771 . . . . . . . . 9 (2 · π) ∈ ℂ
5 mulcl 7747 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (𝐾 · (2 · π)) ∈ ℂ)
61, 4, 5sylancl 409 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 · (2 · π)) ∈ ℂ)
7 ax-icn 7715 . . . . . . . . 9 i ∈ ℂ
8 adddi 7752 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
97, 8mp3an1 1302 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
106, 9sylan2 284 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
11 mul12 7891 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
127, 4, 11mp3an13 1306 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
131, 12syl 14 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
147, 4mulcli 7771 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
15 mulcom 7749 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (i · (2 · π)) ∈ ℂ) → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
161, 14, 15sylancl 409 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
1713, 16eqtrd 2172 . . . . . . . . 9 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1817adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1918oveq2d 5790 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((i · 𝐴) + (i · (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2010, 19eqtrd 2172 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2120fveq2d 5425 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))))
22 mulcl 7747 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
237, 22mpan 420 . . . . . 6 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
24 efper 12888 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2523, 24sylan 281 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2621, 25eqtrd 2172 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(i · 𝐴)))
27 negicn 7963 . . . . . . . . 9 -i ∈ ℂ
28 adddi 7752 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
2927, 28mp3an1 1302 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
306, 29sylan2 284 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
3117negeqd 7957 . . . . . . . . . 10 (𝐾 ∈ ℤ → -(i · (𝐾 · (2 · π))) = -((i · (2 · π)) · 𝐾))
32 mulneg1 8157 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
337, 6, 32sylancr 410 . . . . . . . . . 10 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
34 mulneg2 8158 . . . . . . . . . . 11 (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3514, 1, 34sylancr 410 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3631, 33, 353eqtr4d 2182 . . . . . . . . 9 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3736adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3837oveq2d 5790 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
3930, 38eqtrd 2172 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
4039fveq2d 5425 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))))
41 mulcl 7747 . . . . . . 7 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
4227, 41mpan 420 . . . . . 6 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
43 znegcl 9085 . . . . . 6 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
44 efper 12888 . . . . . 6 (((-i · 𝐴) ∈ ℂ ∧ -𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4542, 43, 44syl2an 287 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4640, 45eqtrd 2172 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(-i · 𝐴)))
4726, 46oveq12d 5792 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) = ((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))))
4847oveq1d 5789 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
49 addcl 7745 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
506, 49sylan2 284 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
51 sinperlem.2 . . 3 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
5250, 51syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
53 sinperlem.1 . . 3 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5453adantr 274 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5548, 52, 543eqtr4d 2182 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cfv 5123  (class class class)co 5774  cc 7618  ici 7622   + caddc 7623   · cmul 7625  -cneg 7934   / cdiv 8432  2c2 8771  cz 9054  expce 11348  πcpi 11353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-pre-suploc 7741  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-9 8786  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-ioo 9675  df-ioc 9676  df-ico 9677  df-icc 9678  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-shft 10587  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357  df-pi 11359  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  sinper  12890  cosper  12891
  Copyright terms: Public domain W3C validator