ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminltinf GIF version

Theorem xrminltinf 11044
Description: Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
Assertion
Ref Expression
xrminltinf ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴𝐶 < 𝐴)))

Proof of Theorem xrminltinf
StepHypRef Expression
1 xnegcl 9618 . . . 4 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
213ad2ant2 1003 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐵 ∈ ℝ*)
3 xnegcl 9618 . . . 4 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
433ad2ant3 1004 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐶 ∈ ℝ*)
5 xnegcl 9618 . . . 4 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
653ad2ant1 1002 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐴 ∈ ℝ*)
7 xrltmaxsup 11029 . . 3 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ (-𝑒𝐴 < -𝑒𝐵 ∨ -𝑒𝐴 < -𝑒𝐶)))
82, 4, 6, 7syl3anc 1216 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ (-𝑒𝐴 < -𝑒𝐵 ∨ -𝑒𝐴 < -𝑒𝐶)))
9 xrminmax 11037 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))
1093adant1 999 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))
11 xnegneg 9619 . . . . . 6 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
1211eqcomd 2145 . . . . 5 (𝐴 ∈ ℝ*𝐴 = -𝑒-𝑒𝐴)
13123ad2ant1 1002 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 = -𝑒-𝑒𝐴)
1410, 13breq12d 3942 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) < -𝑒-𝑒𝐴))
15 xrmaxcl 11024 . . . . 5 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
162, 4, 15syl2anc 408 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
17 xltneg 9622 . . . 4 ((-𝑒𝐴 ∈ ℝ* ∧ sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) < -𝑒-𝑒𝐴))
186, 16, 17syl2anc 408 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) < -𝑒-𝑒𝐴))
1914, 18bitr4d 190 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ -𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
20 simp2 982 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
21 simp1 981 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
22 xltneg 9622 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
2320, 21, 22syl2anc 408 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
24 simp3 983 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
25 xltneg 9622 . . . 4 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐶))
2624, 21, 25syl2anc 408 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐶))
2723, 26orbi12d 782 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 < 𝐴𝐶 < 𝐴) ↔ (-𝑒𝐴 < -𝑒𝐵 ∨ -𝑒𝐴 < -𝑒𝐶)))
288, 19, 273bitr4d 219 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴𝐶 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  {cpr 3528   class class class wbr 3929  supcsup 6869  infcinf 6870  *cxr 7802   < clt 7803  -𝑒cxne 9559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-rp 9445  df-xneg 9562  df-seqfrec 10222  df-exp 10296  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774
This theorem is referenced by:  bdbl  12675
  Copyright terms: Public domain W3C validator