ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllempos GIF version

Theorem zaddcllempos 9091
Description: Lemma for zaddcl 9094. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllempos ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcllempos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . 5 (𝑥 = 1 → (𝑀 + 𝑥) = (𝑀 + 1))
21eleq1d 2208 . . . 4 (𝑥 = 1 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 1) ∈ ℤ))
32imbi2d 229 . . 3 (𝑥 = 1 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)))
4 oveq2 5782 . . . . 5 (𝑥 = 𝑦 → (𝑀 + 𝑥) = (𝑀 + 𝑦))
54eleq1d 2208 . . . 4 (𝑥 = 𝑦 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑦) ∈ ℤ))
65imbi2d 229 . . 3 (𝑥 = 𝑦 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ)))
7 oveq2 5782 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑀 + 𝑥) = (𝑀 + (𝑦 + 1)))
87eleq1d 2208 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ))
98imbi2d 229 . . 3 (𝑥 = (𝑦 + 1) → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)))
10 oveq2 5782 . . . . 5 (𝑥 = 𝑁 → (𝑀 + 𝑥) = (𝑀 + 𝑁))
1110eleq1d 2208 . . . 4 (𝑥 = 𝑁 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑁) ∈ ℤ))
1211imbi2d 229 . . 3 (𝑥 = 𝑁 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ)))
13 peano2z 9090 . . 3 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
14 peano2z 9090 . . . . . 6 ((𝑀 + 𝑦) ∈ ℤ → ((𝑀 + 𝑦) + 1) ∈ ℤ)
15 zcn 9059 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1615adantl 275 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ)
17 nncn 8728 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1817adantr 274 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑦 ∈ ℂ)
19 1cnd 7782 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ)
2016, 18, 19addassd 7788 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) + 1) = (𝑀 + (𝑦 + 1)))
2120eleq1d 2208 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (((𝑀 + 𝑦) + 1) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ))
2214, 21syl5ib 153 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))
2322ex 114 . . . 4 (𝑦 ∈ ℕ → (𝑀 ∈ ℤ → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)))
2423a2d 26 . . 3 (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)))
253, 6, 9, 12, 13, 24nnind 8736 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ))
2625impcom 124 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  (class class class)co 5774  cc 7618  1c1 7621   + caddc 7623  cn 8720  cz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by:  zaddcl  9094
  Copyright terms: Public domain W3C validator