Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu5 Structured version   Visualization version   GIF version

Theorem 2eu5 2555
 Description: An alternate definition of double existential uniqueness (see 2eu4 2554). A mistake sometimes made in the literature is to use ∃!𝑥∃!𝑦 to mean "exactly one 𝑥 and exactly one 𝑦." (For example, see Proposition 7.53 of [TakeutiZaring] p. 53.) It turns out that this is actually a weaker assertion, as can be seen by expanding out the formal definitions. This theorem shows that the erroneous definition can be repaired by conjoining ∀𝑥∃*𝑦𝜑 as an additional condition. The correct definition apparently has never been published. (∃* means "exists at most one."). (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
2eu5 ((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝜑,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2eu5
StepHypRef Expression
1 2eu1 2551 . . 3 (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑)))
21pm5.32ri 669 . 2 ((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ∧ ∀𝑥∃*𝑦𝜑))
3 eumo 2497 . . . . 5 (∃!𝑦𝑥𝜑 → ∃*𝑦𝑥𝜑)
43adantl 482 . . . 4 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃*𝑦𝑥𝜑)
5 2moex 2541 . . . 4 (∃*𝑦𝑥𝜑 → ∀𝑥∃*𝑦𝜑)
64, 5syl 17 . . 3 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∀𝑥∃*𝑦𝜑)
76pm4.71i 663 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ∧ ∀𝑥∃*𝑦𝜑))
8 2eu4 2554 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
92, 7, 83bitr2i 288 1 ((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1479  ∃wex 1702  ∃!weu 2468  ∃*wmo 2469 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-eu 2472  df-mo 2473 This theorem is referenced by:  2reu5lem3  3409
 Copyright terms: Public domain W3C validator