MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpropd Structured version   Visualization version   GIF version

Theorem ablpropd 18917
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
Hypotheses
Ref Expression
ablpropd.1 (𝜑𝐵 = (Base‘𝐾))
ablpropd.2 (𝜑𝐵 = (Base‘𝐿))
ablpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
ablpropd (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ablpropd
StepHypRef Expression
1 ablpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 ablpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 ablpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3grppropd 18118 . . 3 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
51, 2, 3cmnpropd 18916 . . 3 (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
64, 5anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd) ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd)))
7 isabl 18910 . 2 (𝐾 ∈ Abel ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd))
8 isabl 18910 . 2 (𝐿 ∈ Abel ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd))
96, 7, 83bitr4g 316 1 (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Grpcgrp 18103  CMndccmn 18906  Abelcabl 18907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-cmn 18908  df-abl 18909
This theorem is referenced by:  ablprop  18918
  Copyright terms: Public domain W3C validator