Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  absnsb Structured version   Visualization version   GIF version

Theorem absnsb 43311
Description: If the class abstraction {𝑥𝜑} associated with the wff 𝜑 is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
absnsb ({𝑥𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem absnsb
StepHypRef Expression
1 abid 2803 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
2 velsn 4583 . . . . 5 (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦)
31, 2bibi12i 342 . . . 4 ((𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑦}) ↔ (𝜑𝑥 = 𝑦))
4 biimpr 222 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑥 = 𝑦𝜑))
53, 4sylbi 219 . . 3 ((𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑦}) → (𝑥 = 𝑦𝜑))
65alimi 1812 . 2 (∀𝑥(𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑦}) → ∀𝑥(𝑥 = 𝑦𝜑))
7 nfab1 2979 . . 3 𝑥{𝑥𝜑}
8 nfcv 2977 . . 3 𝑥{𝑦}
97, 8cleqf 3010 . 2 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑦}))
10 sb6 2093 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
116, 9, 103imtr4i 294 1 ({𝑥𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wal 1535   = wceq 1537  [wsb 2069  wcel 2114  {cab 2799  {csn 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-sn 4568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator