MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alinexa Structured version   Visualization version   GIF version

Theorem alinexa 1758
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
alinexa (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))

Proof of Theorem alinexa
StepHypRef Expression
1 imnang 1757 . 2 (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑𝜓))
2 alnex 1696 . 2 (∀𝑥 ¬ (𝜑𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
31, 2bitri 262 1 (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  wal 1472  wex 1694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727
This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695
This theorem is referenced by:  equs3  1861  ralnexOLD  2972  r2exlem  3037  zfregs2  8466  ac6n  9164  nnunb  11132  alexsubALTlem3  21602  nmobndseqi  26821  bj-exnalimn  31600  bj-ssbn  31633  frege124d  36872  zfregs2VD  37898
  Copyright terms: Public domain W3C validator