Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-prmoore Structured version   Visualization version   GIF version

Theorem bj-prmoore 34431
Description: A pair formed of two nested sets is a Moore collection. (Note that in the statement, if 𝐵 is a proper class, we are in the case of bj-snmoore 34429). A direct consequence is {∅, 𝐴} ∈ Moore.

More generally, any nonempty well-ordered chain of sets that is a set is a Moore collection.

We also have the biconditional ((𝐴𝐵) ∈ 𝑉 ({𝐴, 𝐵} ∈ Moore ↔ (𝐴𝐵𝐵𝐴))). (Contributed by BJ, 11-Apr-2024.)

Assertion
Ref Expression
bj-prmoore ((𝐴𝑉𝐴𝐵) → {𝐴, 𝐵} ∈ Moore)

Proof of Theorem bj-prmoore
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm3.22 462 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐴𝑉) → (𝐴𝑉𝐵 ∈ V))
21adantrr 715 . . . . . 6 ((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → (𝐴𝑉𝐵 ∈ V))
3 uniprg 4849 . . . . . 6 ((𝐴𝑉𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
42, 3syl 17 . . . . 5 ((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → {𝐴, 𝐵} = (𝐴𝐵))
5 simprr 771 . . . . . 6 ((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → 𝐴𝐵)
6 ssequn1 4149 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
75, 6sylib 220 . . . . 5 ((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → (𝐴𝐵) = 𝐵)
84, 7eqtrd 2855 . . . 4 ((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → {𝐴, 𝐵} = 𝐵)
9 prid2g 4690 . . . . 5 (𝐵 ∈ V → 𝐵 ∈ {𝐴, 𝐵})
109adantr 483 . . . 4 ((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → 𝐵 ∈ {𝐴, 𝐵})
118, 10eqeltrd 2912 . . 3 ((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → {𝐴, 𝐵} ∈ {𝐴, 𝐵})
12 biid 263 . . . . 5 ((𝐴𝑉𝐴𝐵) ↔ (𝐴𝑉𝐴𝐵))
1312bianass 640 . . . 4 ((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) ↔ ((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵))
14 inteq 4872 . . . . . . . . . 10 (𝑥 = {𝐴} → 𝑥 = {𝐴})
15 intsng 4904 . . . . . . . . . . 11 (𝐴𝑉 {𝐴} = 𝐴)
1615adantl 484 . . . . . . . . . 10 ((𝐵 ∈ V ∧ 𝐴𝑉) → {𝐴} = 𝐴)
1714, 16sylan9eqr 2877 . . . . . . . . 9 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝑥 = {𝐴}) → 𝑥 = 𝐴)
18 prid1g 4689 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
1918adantl 484 . . . . . . . . . 10 ((𝐵 ∈ V ∧ 𝐴𝑉) → 𝐴 ∈ {𝐴, 𝐵})
2019adantr 483 . . . . . . . . 9 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝑥 = {𝐴}) → 𝐴 ∈ {𝐴, 𝐵})
2117, 20eqeltrd 2912 . . . . . . . 8 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝑥 = {𝐴}) → 𝑥 ∈ {𝐴, 𝐵})
2221ex 415 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐴𝑉) → (𝑥 = {𝐴} → 𝑥 ∈ {𝐴, 𝐵}))
2322adantr 483 . . . . . 6 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) → (𝑥 = {𝐴} → 𝑥 ∈ {𝐴, 𝐵}))
24 inteq 4872 . . . . . . . . . . 11 (𝑥 = {𝐵} → 𝑥 = {𝐵})
25 intsng 4904 . . . . . . . . . . . 12 (𝐵 ∈ V → {𝐵} = 𝐵)
2625adantr 483 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ 𝐴𝑉) → {𝐵} = 𝐵)
2724, 26sylan9eqr 2877 . . . . . . . . . 10 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝑥 = {𝐵}) → 𝑥 = 𝐵)
289ad2antrr 724 . . . . . . . . . 10 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝑥 = {𝐵}) → 𝐵 ∈ {𝐴, 𝐵})
2927, 28eqeltrd 2912 . . . . . . . . 9 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝑥 = {𝐵}) → 𝑥 ∈ {𝐴, 𝐵})
3029ex 415 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝐴𝑉) → (𝑥 = {𝐵} → 𝑥 ∈ {𝐴, 𝐵}))
3130adantr 483 . . . . . . 7 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) → (𝑥 = {𝐵} → 𝑥 ∈ {𝐴, 𝐵}))
32 inteq 4872 . . . . . . . . . . 11 (𝑥 = {𝐴, 𝐵} → 𝑥 = {𝐴, 𝐵})
3332adantl 484 . . . . . . . . . 10 ((((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → 𝑥 = {𝐴, 𝐵})
341ad2antrr 724 . . . . . . . . . . 11 ((((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → (𝐴𝑉𝐵 ∈ V))
35 intprg 4903 . . . . . . . . . . 11 ((𝐴𝑉𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
3634, 35syl 17 . . . . . . . . . 10 ((((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → {𝐴, 𝐵} = (𝐴𝐵))
37 df-ss 3945 . . . . . . . . . . . . 13 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
3837biimpi 218 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝐵) = 𝐴)
3938adantl 484 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) → (𝐴𝐵) = 𝐴)
4039adantr 483 . . . . . . . . . 10 ((((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → (𝐴𝐵) = 𝐴)
4133, 36, 403eqtrd 2859 . . . . . . . . 9 ((((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → 𝑥 = 𝐴)
4218ad3antlr 729 . . . . . . . . 9 ((((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → 𝐴 ∈ {𝐴, 𝐵})
4341, 42eqeltrd 2912 . . . . . . . 8 ((((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → 𝑥 ∈ {𝐴, 𝐵})
4443ex 415 . . . . . . 7 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) → (𝑥 = {𝐴, 𝐵} → 𝑥 ∈ {𝐴, 𝐵}))
4531, 44jaod 855 . . . . . 6 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) → ((𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}) → 𝑥 ∈ {𝐴, 𝐵}))
4623, 45jaod 855 . . . . 5 (((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) → ((𝑥 = {𝐴} ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) → 𝑥 ∈ {𝐴, 𝐵}))
47 sspr 4759 . . . . . 6 (𝑥 ⊆ {𝐴, 𝐵} ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
48 andir 1005 . . . . . . 7 ((((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) ∧ 𝑥 ≠ ∅) ↔ (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∧ 𝑥 ≠ ∅) ∨ ((𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}) ∧ 𝑥 ≠ ∅)))
49 andir 1005 . . . . . . . . 9 (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∧ 𝑥 ≠ ∅) ↔ ((𝑥 = ∅ ∧ 𝑥 ≠ ∅) ∨ (𝑥 = {𝐴} ∧ 𝑥 ≠ ∅)))
50 eqneqall 3026 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑥 ≠ ∅ → ⊥))
5150imp 409 . . . . . . . . . . 11 ((𝑥 = ∅ ∧ 𝑥 ≠ ∅) → ⊥)
52 simpl 485 . . . . . . . . . . 11 ((𝑥 = {𝐴} ∧ 𝑥 ≠ ∅) → 𝑥 = {𝐴})
5351, 52orim12i 905 . . . . . . . . . 10 (((𝑥 = ∅ ∧ 𝑥 ≠ ∅) ∨ (𝑥 = {𝐴} ∧ 𝑥 ≠ ∅)) → (⊥ ∨ 𝑥 = {𝐴}))
54 falim 1553 . . . . . . . . . . 11 (⊥ → 𝑥 = {𝐴})
5554bj-jaoi1 33925 . . . . . . . . . 10 ((⊥ ∨ 𝑥 = {𝐴}) → 𝑥 = {𝐴})
5653, 55syl 17 . . . . . . . . 9 (((𝑥 = ∅ ∧ 𝑥 ≠ ∅) ∨ (𝑥 = {𝐴} ∧ 𝑥 ≠ ∅)) → 𝑥 = {𝐴})
5749, 56sylbi 219 . . . . . . . 8 (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∧ 𝑥 ≠ ∅) → 𝑥 = {𝐴})
58 simpl 485 . . . . . . . 8 (((𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}) ∧ 𝑥 ≠ ∅) → (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))
5957, 58orim12i 905 . . . . . . 7 ((((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∧ 𝑥 ≠ ∅) ∨ ((𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}) ∧ 𝑥 ≠ ∅)) → (𝑥 = {𝐴} ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
6048, 59sylbi 219 . . . . . 6 ((((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) ∧ 𝑥 ≠ ∅) → (𝑥 = {𝐴} ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
6147, 60sylanb 583 . . . . 5 ((𝑥 ⊆ {𝐴, 𝐵} ∧ 𝑥 ≠ ∅) → (𝑥 = {𝐴} ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
6246, 61impel 508 . . . 4 ((((𝐵 ∈ V ∧ 𝐴𝑉) ∧ 𝐴𝐵) ∧ (𝑥 ⊆ {𝐴, 𝐵} ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ {𝐴, 𝐵})
6313, 62sylanb 583 . . 3 (((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) ∧ (𝑥 ⊆ {𝐴, 𝐵} ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ {𝐴, 𝐵})
6411, 63bj-ismooredr2 34426 . 2 ((𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → {𝐴, 𝐵} ∈ Moore)
65 pm3.22 462 . . . . 5 ((¬ 𝐵 ∈ V ∧ 𝐴𝑉) → (𝐴𝑉 ∧ ¬ 𝐵 ∈ V))
6665adantrr 715 . . . 4 ((¬ 𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → (𝐴𝑉 ∧ ¬ 𝐵 ∈ V))
67 prprc2 4695 . . . . . 6 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})
6867adantl 484 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = {𝐴})
6968eqcomd 2826 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐵 ∈ V) → {𝐴} = {𝐴, 𝐵})
7066, 69syl 17 . . 3 ((¬ 𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → {𝐴} = {𝐴, 𝐵})
71 bj-snmoore 34429 . . . 4 (𝐴𝑉 → {𝐴} ∈ Moore)
7271ad2antrl 726 . . 3 ((¬ 𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → {𝐴} ∈ Moore)
7370, 72eqeltrrd 2913 . 2 ((¬ 𝐵 ∈ V ∧ (𝐴𝑉𝐴𝐵)) → {𝐴, 𝐵} ∈ Moore)
7464, 73pm2.61ian 810 1 ((𝐴𝑉𝐴𝐵) → {𝐴, 𝐵} ∈ Moore)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1536  wfal 1548  wcel 2113  wne 3015  Vcvv 3491  cun 3927  cin 3928  wss 3929  c0 4284  {csn 4560  {cpr 4562   cuni 4831   cint 4869  Moorecmoore 34419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-pw 4534  df-sn 4561  df-pr 4563  df-uni 4832  df-int 4870  df-bj-moore 34420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator