Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1154 Structured version   Visualization version   GIF version

Theorem bnj1154 32278
Description: Property of Fr. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1154 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem bnj1154
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 bnj658 32029 . 2 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → (𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅))
2 elisset 3497 . . . . 5 (𝐵 ∈ V → ∃𝑏 𝑏 = 𝐵)
32bnj708 32034 . . . 4 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑏 𝑏 = 𝐵)
4 df-fr 5500 . . . . . . . 8 (𝑅 Fr 𝐴 ↔ ∀𝑏((𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥))
54biimpi 218 . . . . . . 7 (𝑅 Fr 𝐴 → ∀𝑏((𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥))
6519.21bi 2188 . . . . . 6 (𝑅 Fr 𝐴 → ((𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥))
763impib 1112 . . . . 5 ((𝑅 Fr 𝐴𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥)
8 sseq1 3980 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝐴𝐵𝐴))
9 neeq1 3078 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
108, 93anbi23d 1435 . . . . . 6 (𝑏 = 𝐵 → ((𝑅 Fr 𝐴𝑏𝐴𝑏 ≠ ∅) ↔ (𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅)))
11 raleq 3405 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
1211rexeqbi1dv 3404 . . . . . 6 (𝑏 = 𝐵 → (∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
1310, 12imbi12d 347 . . . . 5 (𝑏 = 𝐵 → (((𝑅 Fr 𝐴𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥) ↔ ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)))
147, 13mpbii 235 . . . 4 (𝑏 = 𝐵 → ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
153, 14bnj593 32023 . . 3 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑏((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
1615bnj937 32050 . 2 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
171, 16mpd 15 1 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083  wal 1535   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3486  wss 3924  c0 4279   class class class wbr 5052   Fr wfr 5497  w-bnj17 31963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-ne 3017  df-ral 3143  df-rex 3144  df-in 3931  df-ss 3940  df-fr 5500  df-bnj17 31964
This theorem is referenced by:  bnj1190  32287
  Copyright terms: Public domain W3C validator