Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1171 Structured version   Visualization version   GIF version

Theorem bnj1171 30811
Description: Technical lemma for bnj69 30821. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1171.13 ((𝜑𝜓) → 𝐵𝐴)
bnj1171.129 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
Assertion
Ref Expression
bnj1171 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))

Proof of Theorem bnj1171
StepHypRef Expression
1 bnj1171.129 . 2 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
2 bnj1171.13 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵𝐴)
32sseld 3586 . . . . . . . . . 10 ((𝜑𝜓) → (𝑤𝐵𝑤𝐴))
43pm4.71rd 666 . . . . . . . . 9 ((𝜑𝜓) → (𝑤𝐵 ↔ (𝑤𝐴𝑤𝐵)))
54imbi1d 331 . . . . . . . 8 ((𝜑𝜓) → ((𝑤𝐵 → ¬ 𝑤𝑅𝑧) ↔ ((𝑤𝐴𝑤𝐵) → ¬ 𝑤𝑅𝑧)))
6 impexp 462 . . . . . . . 8 (((𝑤𝐴𝑤𝐵) → ¬ 𝑤𝑅𝑧) ↔ (𝑤𝐴 → (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))
75, 6syl6bb 276 . . . . . . 7 ((𝜑𝜓) → ((𝑤𝐵 → ¬ 𝑤𝑅𝑧) ↔ (𝑤𝐴 → (𝑤𝐵 → ¬ 𝑤𝑅𝑧))))
8 con2b 349 . . . . . . . 8 ((𝑤𝑅𝑧 → ¬ 𝑤𝐵) ↔ (𝑤𝐵 → ¬ 𝑤𝑅𝑧))
98imbi2i 326 . . . . . . 7 ((𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)) ↔ (𝑤𝐴 → (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))
107, 9syl6bbr 278 . . . . . 6 ((𝜑𝜓) → ((𝑤𝐵 → ¬ 𝑤𝑅𝑧) ↔ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
1110anbi2d 739 . . . . 5 ((𝜑𝜓) → ((𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)) ↔ (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
1211pm5.74i 260 . . . 4 (((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧))) ↔ ((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
1312albii 1744 . . 3 (∀𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧))) ↔ ∀𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
1413exbii 1771 . 2 (∃𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧))) ↔ ∃𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
151, 14mpbir 221 1 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478  wex 1701  wcel 1987  wss 3559   class class class wbr 4618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-in 3566  df-ss 3573
This theorem is referenced by:  bnj1190  30819
  Copyright terms: Public domain W3C validator