Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabsb2 Structured version   Visualization version   GIF version

Theorem brabsb2 34466
Description: A closed form of brabsb 5015. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
brabsb2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem brabsb2
StepHypRef Expression
1 breq 4687 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑤))
2 df-br 4686 . . 3 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
31, 2syl6bb 276 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
4 opelopabsbALT 5013 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
53, 4syl6bb 276 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  [wsb 1937  wcel 2030  cop 4216   class class class wbr 4685  {copab 4745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator