Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brdmqss Structured version   Visualization version   GIF version

Theorem brdmqss 35915
Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
brdmqss ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))

Proof of Theorem brdmqss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmqseq 35909 . . . 4 (𝑥 = 𝑅 → (dom 𝑥 / 𝑥) = (dom 𝑅 / 𝑅))
2 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
31, 2eqeqan12d 2837 . . 3 ((𝑥 = 𝑅𝑦 = 𝐴) → ((dom 𝑥 / 𝑥) = 𝑦 ↔ (dom 𝑅 / 𝑅) = 𝐴))
4 df-dmqss 35907 . . 3 DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦}
53, 4brabga 5414 . 2 ((𝑅𝑊𝐴𝑉) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))
65ancoms 461 1 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113   class class class wbr 5059  dom cdm 5548   / cqs 8281   DomainQss cdmqss 35510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-br 5060  df-opab 5122  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ec 8284  df-qs 8288  df-dmqss 35907
This theorem is referenced by:  brdmqssqs  35916  cnvepresdmqss  35920
  Copyright terms: Public domain W3C validator