Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfldext Structured version   Visualization version   GIF version

Theorem brfldext 31061
Description: The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
brfldext ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))

Proof of Theorem brfldext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑒 = 𝐸)
21eleq1d 2896 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 ∈ Field ↔ 𝐸 ∈ Field))
3 simpr 487 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑓 = 𝐹)
43eleq1d 2896 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑓 ∈ Field ↔ 𝐹 ∈ Field))
52, 4anbi12d 632 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ↔ (𝐸 ∈ Field ∧ 𝐹 ∈ Field)))
63fveq2d 6667 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
71, 6oveq12d 7167 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒s (Base‘𝑓)) = (𝐸s (Base‘𝐹)))
83, 7eqeq12d 2836 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑓 = (𝑒s (Base‘𝑓)) ↔ 𝐹 = (𝐸s (Base‘𝐹))))
91fveq2d 6667 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (SubRing‘𝑒) = (SubRing‘𝐸))
106, 9eleq12d 2906 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → ((Base‘𝑓) ∈ (SubRing‘𝑒) ↔ (Base‘𝐹) ∈ (SubRing‘𝐸)))
118, 10anbi12d 632 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)) ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
125, 11anbi12d 632 . . 3 ((𝑒 = 𝐸𝑓 = 𝐹) → (((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒))) ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))))
13 df-fldext 31056 . . 3 /FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
1412, 13brabga 5414 . 2 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) ∧ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))))
1514bianabs 544 1 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113   class class class wbr 5059  cfv 6348  (class class class)co 7149  Basecbs 16478  s cress 16479  Fieldcfield 19498  SubRingcsubrg 19526  /FldExtcfldext 31052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-iota 6307  df-fv 6356  df-ov 7152  df-fldext 31056
This theorem is referenced by:  ccfldextrr  31062  fldextsubrg  31065  fldextress  31066  fldexttr  31072  fldextid  31073  extdgmul  31075
  Copyright terms: Public domain W3C validator