Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brredunds Structured version   Visualization version   GIF version

Theorem brredunds 35876
Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
brredunds ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))

Proof of Theorem brredunds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq12 3994 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
213adant3 1128 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑦𝐴𝐵))
3 ineq12 4184 . . . . 5 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝑧) = (𝐴𝐶))
433adant2 1127 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑧) = (𝐴𝐶))
5 ineq12 4184 . . . . 5 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑧) = (𝐵𝐶))
653adant1 1126 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑧) = (𝐵𝐶))
74, 6eqeq12d 2837 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑧) = (𝑦𝑧) ↔ (𝐴𝐶) = (𝐵𝐶)))
82, 7anbi12d 632 . 2 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑦 ∧ (𝑥𝑧) = (𝑦𝑧)) ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
9 df-redunds 35873 . 2 Redunds = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ (𝑥𝑦 ∧ (𝑥𝑧) = (𝑦𝑧))}
108, 9brcnvrabga 35614 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cin 3935  wss 3936  cop 4573   class class class wbr 5066   Redunds credunds 35488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-oprab 7160  df-redunds 35873
This theorem is referenced by:  brredundsredund  35877
  Copyright terms: Public domain W3C validator