MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbexg Structured version   Visualization version   GIF version

Theorem csbexg 4714
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
csbexg (∀𝑥 𝐵𝑊𝐴 / 𝑥𝐵 ∈ V)

Proof of Theorem csbexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3499 . . 3 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 abid2 2731 . . . . . . . 8 {𝑦𝑦𝐵} = 𝐵
3 elex 3184 . . . . . . . 8 (𝐵𝑊𝐵 ∈ V)
42, 3syl5eqel 2691 . . . . . . 7 (𝐵𝑊 → {𝑦𝑦𝐵} ∈ V)
54alimi 1729 . . . . . 6 (∀𝑥 𝐵𝑊 → ∀𝑥{𝑦𝑦𝐵} ∈ V)
6 spsbc 3414 . . . . . 6 (𝐴 ∈ V → (∀𝑥{𝑦𝑦𝐵} ∈ V → [𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
75, 6syl5 33 . . . . 5 (𝐴 ∈ V → (∀𝑥 𝐵𝑊[𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
8 nfcv 2750 . . . . . 6 𝑥V
98sbcabel 3482 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
107, 9sylibd 227 . . . 4 (𝐴 ∈ V → (∀𝑥 𝐵𝑊 → {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
1110imp 443 . . 3 ((𝐴 ∈ V ∧ ∀𝑥 𝐵𝑊) → {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V)
121, 11syl5eqel 2691 . 2 ((𝐴 ∈ V ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)
13 csbprc 3931 . . . 4 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
14 0ex 4712 . . . 4 ∅ ∈ V
1513, 14syl6eqel 2695 . . 3 𝐴 ∈ V → 𝐴 / 𝑥𝐵 ∈ V)
1615adantr 479 . 2 ((¬ 𝐴 ∈ V ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)
1712, 16pm2.61ian 826 1 (∀𝑥 𝐵𝑊𝐴 / 𝑥𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wal 1472  wcel 1976  {cab 2595  Vcvv 3172  [wsbc 3401  csb 3498  c0 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-nul 4711
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-nul 3874
This theorem is referenced by:  csbex  4715  abfmpeld  28627
  Copyright terms: Public domain W3C validator