MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth4h Structured version   Visualization version   GIF version

Theorem dedth4h 4133
Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h 4131. (Contributed by NM, 16-May-1999.)
Hypotheses
Ref Expression
dedth4h.1 (𝐴 = if(𝜑, 𝐴, 𝑅) → (𝜏𝜂))
dedth4h.2 (𝐵 = if(𝜓, 𝐵, 𝑆) → (𝜂𝜁))
dedth4h.3 (𝐶 = if(𝜒, 𝐶, 𝐹) → (𝜁𝜎))
dedth4h.4 (𝐷 = if(𝜃, 𝐷, 𝐺) → (𝜎𝜌))
dedth4h.5 𝜌
Assertion
Ref Expression
dedth4h (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem dedth4h
StepHypRef Expression
1 dedth4h.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝑅) → (𝜏𝜂))
21imbi2d 330 . . 3 (𝐴 = if(𝜑, 𝐴, 𝑅) → (((𝜒𝜃) → 𝜏) ↔ ((𝜒𝜃) → 𝜂)))
3 dedth4h.2 . . . 4 (𝐵 = if(𝜓, 𝐵, 𝑆) → (𝜂𝜁))
43imbi2d 330 . . 3 (𝐵 = if(𝜓, 𝐵, 𝑆) → (((𝜒𝜃) → 𝜂) ↔ ((𝜒𝜃) → 𝜁)))
5 dedth4h.3 . . . 4 (𝐶 = if(𝜒, 𝐶, 𝐹) → (𝜁𝜎))
6 dedth4h.4 . . . 4 (𝐷 = if(𝜃, 𝐷, 𝐺) → (𝜎𝜌))
7 dedth4h.5 . . . 4 𝜌
85, 6, 7dedth2h 4131 . . 3 ((𝜒𝜃) → 𝜁)
92, 4, 8dedth2h 4131 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
109imp 445 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  ifcif 4077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-if 4078
This theorem is referenced by:  dedth4v  4136  fprg  6407  omopth  7723  nn0opth2  13042  ax5seglem8  25797  hvsubsub4  27887  norm3lemt  27979  eigorth  28667
  Copyright terms: Public domain W3C validator