MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-prod Structured version   Visualization version   GIF version

Definition df-prod 15925
Description: Define the product of a series with an index set of integers 𝐴. This definition takes most of the aspects of df-sum 15708 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
df-prod 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝑦   𝐴,𝑓,𝑚,𝑛,𝑥,𝑦   𝐵,𝑓,𝑚,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Detailed syntax breakdown of Definition df-prod
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 vk . . 3 setvar 𝑘
41, 2, 3cprod 15924 . 2 class 𝑘𝐴 𝐵
5 vm . . . . . . . . 9 setvar 𝑚
65cv 1539 . . . . . . . 8 class 𝑚
7 cuz 12857 . . . . . . . 8 class
86, 7cfv 6536 . . . . . . 7 class (ℤ𝑚)
91, 8wss 3931 . . . . . 6 wff 𝐴 ⊆ (ℤ𝑚)
10 vy . . . . . . . . . . 11 setvar 𝑦
1110cv 1539 . . . . . . . . . 10 class 𝑦
12 cc0 11134 . . . . . . . . . 10 class 0
1311, 12wne 2933 . . . . . . . . 9 wff 𝑦 ≠ 0
14 cmul 11139 . . . . . . . . . . 11 class ·
15 cz 12593 . . . . . . . . . . . 12 class
163cv 1539 . . . . . . . . . . . . . 14 class 𝑘
1716, 1wcel 2109 . . . . . . . . . . . . 13 wff 𝑘𝐴
18 c1 11135 . . . . . . . . . . . . 13 class 1
1917, 2, 18cif 4505 . . . . . . . . . . . 12 class if(𝑘𝐴, 𝐵, 1)
203, 15, 19cmpt 5206 . . . . . . . . . . 11 class (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
21 vn . . . . . . . . . . . 12 setvar 𝑛
2221cv 1539 . . . . . . . . . . 11 class 𝑛
2314, 20, 22cseq 14024 . . . . . . . . . 10 class seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
24 cli 15505 . . . . . . . . . 10 class
2523, 11, 24wbr 5124 . . . . . . . . 9 wff seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
2613, 25wa 395 . . . . . . . 8 wff (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
2726, 10wex 1779 . . . . . . 7 wff 𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
2827, 21, 8wrex 3061 . . . . . 6 wff 𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
2914, 20, 6cseq 14024 . . . . . . 7 class seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
30 vx . . . . . . . 8 setvar 𝑥
3130cv 1539 . . . . . . 7 class 𝑥
3229, 31, 24wbr 5124 . . . . . 6 wff seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥
339, 28, 32w3a 1086 . . . . 5 wff (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
3433, 5, 15wrex 3061 . . . 4 wff 𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
35 cfz 13529 . . . . . . . . 9 class ...
3618, 6, 35co 7410 . . . . . . . 8 class (1...𝑚)
37 vf . . . . . . . . 9 setvar 𝑓
3837cv 1539 . . . . . . . 8 class 𝑓
3936, 1, 38wf1o 6535 . . . . . . 7 wff 𝑓:(1...𝑚)–1-1-onto𝐴
40 cn 12245 . . . . . . . . . . 11 class
4122, 38cfv 6536 . . . . . . . . . . . 12 class (𝑓𝑛)
423, 41, 2csb 3879 . . . . . . . . . . 11 class (𝑓𝑛) / 𝑘𝐵
4321, 40, 42cmpt 5206 . . . . . . . . . 10 class (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
4414, 43, 18cseq 14024 . . . . . . . . 9 class seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
456, 44cfv 6536 . . . . . . . 8 class (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
4631, 45wceq 1540 . . . . . . 7 wff 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
4739, 46wa 395 . . . . . 6 wff (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4847, 37wex 1779 . . . . 5 wff 𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4948, 5, 40wrex 3061 . . . 4 wff 𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
5034, 49wo 847 . . 3 wff (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
5150, 30cio 6487 . 2 class (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
524, 51wceq 1540 1 wff 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
Colors of variables: wff setvar class
This definition is referenced by:  prodex  15926  prodeq1f  15927  prodeq1  15928  nfcprod1  15929  nfcprod  15930  prodeq2w  15931  prodeq2ii  15932  cbvprod  15934  cbvprodv  15935  prodeq1i  15937  prodeq2sdv  15944  zprod  15958  fprod  15962  prodeq2si  36227  prodeq12sdv  36241  cbvprodvw2  36270  cbvproddavw  36303  cbvproddavw2  36319
  Copyright terms: Public domain W3C validator