![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfin2 | Structured version Visualization version GIF version |
Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 3892. Another version is given by dfin4 3900. (Contributed by NM, 10-Jun-2004.) |
Ref | Expression |
---|---|
dfin2 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3234 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | eldif 3617 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | mpbiran 973 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥 ∈ 𝐵) |
4 | 3 | con2bii 346 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ (V ∖ 𝐵)) |
5 | 4 | anbi2i 730 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) |
6 | eldif 3617 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (V ∖ 𝐵))) | |
7 | 5, 6 | bitr4i 267 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (𝐴 ∖ (V ∖ 𝐵))) |
8 | 7 | ineqri 3839 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 ∩ cin 3606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-in 3614 |
This theorem is referenced by: dfun3 3898 dfin3 3899 invdif 3901 difundi 3912 difindi 3914 difdif2 3917 |
Copyright terms: Public domain | W3C validator |