MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difrab0eq Structured version   Visualization version   GIF version

Theorem difrab0eq 4010
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
difrab0eq ((𝑉 ∖ {𝑥𝑉𝜑}) = ∅ ↔ 𝑉 = {𝑥𝑉𝜑})
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem difrab0eq
StepHypRef Expression
1 ssdif0 3916 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
2 ssrabeq 3667 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
31, 2bitr3i 266 1 ((𝑉 ∖ {𝑥𝑉𝜑}) = ∅ ↔ 𝑉 = {𝑥𝑉𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1480  {crab 2911  cdif 3552  wss 3555  c0 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-v 3188  df-dif 3558  df-in 3562  df-ss 3569  df-nul 3892
This theorem is referenced by:  frgrregorufr0  27047
  Copyright terms: Public domain W3C validator