Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmrab Structured version   Visualization version   GIF version

Theorem dmrab 30256
Description: Domain of a restricted class abstraction over a cartesian product. (Contributed by Thierry Arnoux, 3-Jul-2023.)
Hypothesis
Ref Expression
dmrab.1 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dmrab dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥𝐴 ∣ ∃𝑦𝐵 𝜓}
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦)

Proof of Theorem dmrab
StepHypRef Expression
1 dmrab.1 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
21elrab 3676 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ 𝜓))
3 opelxp 5584 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
43anbi1i 625 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ 𝜓) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝜓))
5 ancom 463 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
65anbi1i 625 . . . . . . . 8 (((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝜓))
72, 4, 63bitri 299 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝜓))
8 anass 471 . . . . . . 7 (((𝑦𝐵𝑥𝐴) ∧ 𝜓) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝜓)))
9 ancom 463 . . . . . . . 8 ((𝑥𝐴𝜓) ↔ (𝜓𝑥𝐴))
109anbi2i 624 . . . . . . 7 ((𝑦𝐵 ∧ (𝑥𝐴𝜓)) ↔ (𝑦𝐵 ∧ (𝜓𝑥𝐴)))
117, 8, 103bitri 299 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ (𝑦𝐵 ∧ (𝜓𝑥𝐴)))
1211exbii 1847 . . . . 5 (∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ ∃𝑦(𝑦𝐵 ∧ (𝜓𝑥𝐴)))
13 df-rex 3143 . . . . 5 (∃𝑦𝐵 (𝜓𝑥𝐴) ↔ ∃𝑦(𝑦𝐵 ∧ (𝜓𝑥𝐴)))
14 r19.41v 3346 . . . . 5 (∃𝑦𝐵 (𝜓𝑥𝐴) ↔ (∃𝑦𝐵 𝜓𝑥𝐴))
1512, 13, 143bitr2i 301 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ (∃𝑦𝐵 𝜓𝑥𝐴))
1615biancomi 465 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜓))
1716abbii 2885 . 2 {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑}} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜓)}
18 dfdm3 5751 . 2 dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑}}
19 df-rab 3146 . 2 {𝑥𝐴 ∣ ∃𝑦𝐵 𝜓} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜓)}
2017, 18, 193eqtr4i 2853 1 dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥𝐴 ∣ ∃𝑦𝐵 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  {cab 2798  wrex 3138  {crab 3141  cop 4566   × cxp 5546  dom cdm 5548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-br 5060  df-opab 5122  df-xp 5554  df-dm 5558
This theorem is referenced by:  fedgmullem2  31048
  Copyright terms: Public domain W3C validator