![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopabr | Structured version Visualization version GIF version |
Description: Membership in a class abstraction of pairs, defined by a binary relation. (Contributed by AV, 16-Feb-2021.) |
Ref | Expression |
---|---|
elopabr | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5012 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦)) | |
2 | df-br 4686 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
3 | 2 | biimpi 206 | . . . . 5 ⊢ (𝑥𝑅𝑦 → 〈𝑥, 𝑦〉 ∈ 𝑅) |
4 | eleq1 2718 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) | |
5 | 3, 4 | syl5ibr 236 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝑥𝑅𝑦 → 𝐴 ∈ 𝑅)) |
6 | 5 | imp 444 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝐴 ∈ 𝑅) |
7 | 6 | exlimivv 1900 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝐴 ∈ 𝑅) |
8 | 1, 7 | sylbi 207 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 〈cop 4216 class class class wbr 4685 {copab 4745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 |
This theorem is referenced by: elopabran 5043 |
Copyright terms: Public domain | W3C validator |