Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1oresf1o2 Structured version   Visualization version   GIF version

Theorem f1oresf1o2 43539
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.)
Hypotheses
Ref Expression
f1oresf1o2.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresf1o2.2 (𝜑𝐷𝐴)
f1oresf1o2.3 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))
Assertion
Ref Expression
f1oresf1o2 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜒(𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem f1oresf1o2
StepHypRef Expression
1 f1oresf1o2.1 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
2 f1oresf1o2.2 . 2 (𝜑𝐷𝐴)
3 f1of 6615 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
41, 3syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
54adantr 483 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐹:𝐴𝐵)
62sselda 3967 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝑥𝐴)
75, 6jca 514 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐹:𝐴𝐵𝑥𝐴))
873adant3 1128 . . . . . . 7 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → (𝐹:𝐴𝐵𝑥𝐴))
9 ffvelrn 6849 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
108, 9syl 17 . . . . . 6 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ 𝐵)
11 eleq1 2900 . . . . . . 7 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐵𝑦𝐵))
12113ad2ant3 1131 . . . . . 6 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → ((𝐹𝑥) ∈ 𝐵𝑦𝐵))
1310, 12mpbid 234 . . . . 5 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐵)
14 eqcom 2828 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
15 f1oresf1o2.3 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))
1615biimpd 231 . . . . . . . . 9 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷𝜒))
1716ex 415 . . . . . . . 8 (𝜑 → (𝑦 = (𝐹𝑥) → (𝑥𝐷𝜒)))
1814, 17syl5bi 244 . . . . . . 7 (𝜑 → ((𝐹𝑥) = 𝑦 → (𝑥𝐷𝜒)))
1918com23 86 . . . . . 6 (𝜑 → (𝑥𝐷 → ((𝐹𝑥) = 𝑦𝜒)))
20193imp 1107 . . . . 5 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → 𝜒)
2113, 20jca 514 . . . 4 ((𝜑𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → (𝑦𝐵𝜒))
2221rexlimdv3a 3286 . . 3 (𝜑 → (∃𝑥𝐷 (𝐹𝑥) = 𝑦 → (𝑦𝐵𝜒)))
23 f1ofo 6622 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
241, 23syl 17 . . . . . . 7 (𝜑𝐹:𝐴onto𝐵)
25 foelrni 6727 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
2624, 25sylan 582 . . . . . 6 ((𝜑𝑦𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
2726ex 415 . . . . 5 (𝜑 → (𝑦𝐵 → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
28 nfv 1915 . . . . . 6 𝑥𝜑
29 nfv 1915 . . . . . . 7 𝑥𝜒
30 nfre1 3306 . . . . . . 7 𝑥𝑥𝐷 (𝐹𝑥) = 𝑦
3129, 30nfim 1897 . . . . . 6 𝑥(𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)
32 rspe 3304 . . . . . . . . . . . . . 14 ((𝑥𝐷 ∧ (𝐹𝑥) = 𝑦) → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)
3332expcom 416 . . . . . . . . . . . . 13 ((𝐹𝑥) = 𝑦 → (𝑥𝐷 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3433eqcoms 2829 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (𝑥𝐷 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3534adantl 484 . . . . . . . . . . 11 ((𝜑𝑦 = (𝐹𝑥)) → (𝑥𝐷 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3615, 35sylbird 262 . . . . . . . . . 10 ((𝜑𝑦 = (𝐹𝑥)) → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
3736ex 415 . . . . . . . . 9 (𝜑 → (𝑦 = (𝐹𝑥) → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
3837adantr 483 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
3914, 38syl5bi 244 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
4039ex 415 . . . . . 6 (𝜑 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))))
4128, 31, 40rexlimd 3317 . . . . 5 (𝜑 → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
4227, 41syld 47 . . . 4 (𝜑 → (𝑦𝐵 → (𝜒 → ∃𝑥𝐷 (𝐹𝑥) = 𝑦)))
4342impd 413 . . 3 (𝜑 → ((𝑦𝐵𝜒) → ∃𝑥𝐷 (𝐹𝑥) = 𝑦))
4422, 43impbid 214 . 2 (𝜑 → (∃𝑥𝐷 (𝐹𝑥) = 𝑦 ↔ (𝑦𝐵𝜒)))
451, 2, 44f1oresf1o 43538 1 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  {crab 3142  wss 3936  cres 5557  wf 6351  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator