Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege74 Structured version   Visualization version   GIF version

Theorem frege74 37740
 Description: If 𝑋 has a property 𝐴 that is hereditary in the 𝑅-sequence, then every result of a application of the procedure 𝑅 to 𝑋 has the property 𝐴. Proposition 74 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege74.x 𝑋𝑈
frege74.y 𝑌𝑉
Assertion
Ref Expression
frege74 (𝑋𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌𝑌𝐴)))

Proof of Theorem frege74
StepHypRef Expression
1 frege74.x . . 3 𝑋𝑈
2 frege74.y . . 3 𝑌𝑉
31, 2frege72 37738 . 2 (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))
4 ax-frege8 37612 . 2 ((𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))) → (𝑋𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
53, 4ax-mp 5 1 (𝑋𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌𝑌𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1987   class class class wbr 4618   hereditary whe 37575 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-frege1 37593  ax-frege2 37594  ax-frege8 37612  ax-frege52a 37660  ax-frege58b 37704 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-cnv 5087  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-he 37576 This theorem is referenced by:  frege81  37747
 Copyright terms: Public domain W3C validator