MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssres2 Structured version   Visualization version   GIF version

Theorem fssres2 6233
Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
fssres2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)

Proof of Theorem fssres2
StepHypRef Expression
1 fssres 6231 . 2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → ((𝐹𝐴) ↾ 𝐶):𝐶𝐵)
2 resabs1 5585 . . . 4 (𝐶𝐴 → ((𝐹𝐴) ↾ 𝐶) = (𝐹𝐶))
32feq1d 6191 . . 3 (𝐶𝐴 → (((𝐹𝐴) ↾ 𝐶):𝐶𝐵 ↔ (𝐹𝐶):𝐶𝐵))
43adantl 473 . 2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (((𝐹𝐴) ↾ 𝐶):𝐶𝐵 ↔ (𝐹𝐶):𝐶𝐵))
51, 4mpbid 222 1 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wss 3715  cres 5268  wf 6045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-fun 6051  df-fn 6052  df-f 6053
This theorem is referenced by:  efcvx  24402  filnetlem4  32682
  Copyright terms: Public domain W3C validator