MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2cnv Structured version   Visualization version   GIF version

Theorem fun2cnv 5860
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
fun2cnv (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem fun2cnv
StepHypRef Expression
1 funcnv2 5857 . 2 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑦𝐴𝑥)
2 vex 3175 . . . . 5 𝑦 ∈ V
3 vex 3175 . . . . 5 𝑥 ∈ V
42, 3brcnv 5215 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
54mobii 2480 . . 3 (∃*𝑦 𝑦𝐴𝑥 ↔ ∃*𝑦 𝑥𝐴𝑦)
65albii 1736 . 2 (∀𝑥∃*𝑦 𝑦𝐴𝑥 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
71, 6bitri 262 1 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wal 1472  ∃*wmo 2458   class class class wbr 4577  ccnv 5027  Fun wfun 5784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-fun 5792
This theorem is referenced by:  svrelfun  5861  fun11  5863
  Copyright terms: Public domain W3C validator