Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funres11 Structured version   Visualization version   GIF version

Theorem funres11 5926
 Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
funres11 (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem funres11
StepHypRef Expression
1 resss 5383 . 2 (𝐹𝐴) ⊆ 𝐹
2 cnvss 5256 . 2 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
3 funss 5868 . 2 ((𝐹𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐴)))
41, 2, 3mp2b 10 1 (Fun 𝐹 → Fun (𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ⊆ wss 3556  ◡ccnv 5075   ↾ cres 5078  Fun wfun 5843 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-in 3563  df-ss 3570  df-br 4616  df-opab 4676  df-rel 5083  df-cnv 5084  df-co 5085  df-res 5088  df-fun 5851 This theorem is referenced by:  f1ssres  6067  resdif  6116  f1ssf1  6127  ssdomg  7948  sbthlem8  8024  spthispth  26498
 Copyright terms: Public domain W3C validator