MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaeq Structured version   Visualization version   GIF version

Theorem iotaeq 6020
Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotaeq (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))

Proof of Theorem iotaeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 drsb1 2514 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
2 df-clab 2747 . . . . . . 7 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
3 df-clab 2747 . . . . . . 7 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
41, 2, 33bitr4g 303 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜑}))
54eqrdv 2758 . . . . 5 (∀𝑥 𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜑})
65eqeq1d 2762 . . . 4 (∀𝑥 𝑥 = 𝑦 → ({𝑥𝜑} = {𝑧} ↔ {𝑦𝜑} = {𝑧}))
76abbidv 2879 . . 3 (∀𝑥 𝑥 = 𝑦 → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
87unieqd 4598 . 2 (∀𝑥 𝑥 = 𝑦 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
9 df-iota 6012 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
10 df-iota 6012 . 2 (℩𝑦𝜑) = {𝑧 ∣ {𝑦𝜑} = {𝑧}}
118, 9, 103eqtr4g 2819 1 (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1630   = wceq 1632  [wsb 2046  wcel 2139  {cab 2746  {csn 4321   cuni 4588  cio 6010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rex 3056  df-uni 4589  df-iota 6012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator