MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunab Structured version   Visualization version   GIF version

Theorem iunab 4532
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2761 . . . 4 𝑦𝐴
2 nfab1 2763 . . . 4 𝑦{𝑦𝜑}
31, 2nfiun 4514 . . 3 𝑦 𝑥𝐴 {𝑦𝜑}
4 nfab1 2763 . . 3 𝑦{𝑦 ∣ ∃𝑥𝐴 𝜑}
53, 4cleqf 2786 . 2 ( 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ ∀𝑦(𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑}))
6 abid 2609 . . . 4 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
76rexbii 3034 . . 3 (∃𝑥𝐴 𝑦 ∈ {𝑦𝜑} ↔ ∃𝑥𝐴 𝜑)
8 eliun 4490 . . 3 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∃𝑥𝐴 𝑦 ∈ {𝑦𝜑})
9 abid 2609 . . 3 (𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ ∃𝑥𝐴 𝜑)
107, 8, 93bitr4i 292 . 2 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑})
115, 10mpgbir 1723 1 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1480  wcel 1987  {cab 2607  wrex 2908   ciun 4485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-v 3188  df-iun 4487
This theorem is referenced by:  iunrab  4533  iunid  4541  dfimafn2  6203  rabiun  33011  dfaimafn2  40547  rnfdmpr  40594
  Copyright terms: Public domain W3C validator