HomeHome Metamath Proof Explorer
Theorem List (p. 50 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 4901-5000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsess2 4901 Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
 
Theoremfreq1 4902 Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
 
Theoremfreq2 4903 Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
(𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
 
Theoremseeq1 4904 Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
 
Theoremseeq2 4905 Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
(𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
 
Theoremnffr 4906 Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Fr 𝐴
 
Theoremnfse 4907 Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 Se 𝐴
 
Theoremnfwe 4908 Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝑅    &   𝑥𝐴       𝑥 𝑅 We 𝐴
 
Theoremfrirr 4909 A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
 
Theoremfr2nr 4910 A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
 
Theoremfr0 4911 Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
𝑅 Fr ∅
 
Theoremfrminex 4912* If an element of a well-founded set satisfies a property 𝜑, then there is a minimal element that satisfies 𝜑. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
𝐴 ∈ V    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝑅 Fr 𝐴 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))))
 
Theoremefrirr 4913 Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
( E Fr 𝐴 → ¬ 𝐴𝐴)
 
Theoremefrn2lp 4914 A set founded by epsilon contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.)
(( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝐶𝐶𝐵))
 
Theoremepse 4915 The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
E Se 𝐴
 
Theoremtz7.2 4916 Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.)
((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
 
Theoremdfepfr 4917* An alternate way of saying that the epsilon relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
 
Theoremepfrc 4918* A subset of an epsilon-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.)
𝐵 ∈ V       (( E Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
 
Theoremwess 4919 Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.)
(𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))
 
Theoremweeq1 4920 Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
(𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
 
Theoremweeq2 4921 Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
(𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))
 
Theoremwefr 4922 A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.)
(𝑅 We 𝐴𝑅 Fr 𝐴)
 
Theoremweso 4923 A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.)
(𝑅 We 𝐴𝑅 Or 𝐴)
 
Theoremwecmpep 4924 The elements of an epsilon well-ordering are comparable. (Contributed by NM, 17-May-1994.)
(( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
 
Theoremwetrep 4925 An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.)
(( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
 
Theoremwefrc 4926* A nonempty (possibly proper) subclass of a class well-ordered by E has a minimal element. Special case of Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by NM, 17-Feb-2004.)
(( E We 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
 
Theoremwe0 4927 Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
𝑅 We ∅
 
Theoremwereu 4928* A subset of a well-ordered set has a unique minimal element. (Contributed by NM, 18-Mar-1997.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theoremwereu2 4929* All nonempty (possibly proper) subclasses of 𝐴, which has a well-founded relation 𝑅, have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 24-Jun-2015.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
2.3.9  Relations
 
Syntaxcxp 4930 Extend the definition of a class to include the Cartesian product.
class (𝐴 × 𝐵)
 
Syntaxccnv 4931 Extend the definition of a class to include the converse of a class.
class 𝐴
 
Syntaxcdm 4932 Extend the definition of a class to include the domain of a class.
class dom 𝐴
 
Syntaxcrn 4933 Extend the definition of a class to include the range of a class.
class ran 𝐴
 
Syntaxcres 4934 Extend the definition of a class to include the restriction of a class. (Read: The restriction of 𝐴 to 𝐵.)
class (𝐴𝐵)
 
Syntaxcima 4935 Extend the definition of a class to include the image of a class. (Read: The image of 𝐵 under 𝐴.)
class (𝐴𝐵)
 
Syntaxccom 4936 Extend the definition of a class to include the composition of two classes. (Read: The composition of 𝐴 and 𝐵.)
class (𝐴𝐵)
 
Syntaxwrel 4937 Extend the definition of a wff to include the relation predicate. (Read: 𝐴 is a relation.)
wff Rel 𝐴
 
Definitiondf-xp 4938* Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}) (ex-xp 26423). Another example is that the set of rational numbers are defined in df-q 11531 using the Cartesian product (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
 
Definitiondf-rel 4939 Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5392 and dfrel3 5400. (Contributed by NM, 1-Aug-1994.)
(Rel 𝐴𝐴 ⊆ (V × V))
 
Definitiondf-cnv 4940* Define the converse of a class. Definition 9.12 of [Quine] p. 64. The converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈ V and 𝐵 ∈ V then (𝐴𝑅𝐵𝐵𝑅𝐴), as proven in brcnv 5119 (see df-br 4482 and df-rel 4939 for more on relations). For example, {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩} (ex-cnv 26424). We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. Many authors use the postfix superscript "to the minus one." "Converse" is Quine's terminology; some authors call it "inverse," especially when the argument is a function. (Contributed by NM, 4-Jul-1994.)
𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
 
Definitiondf-co 4941* Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 26425) because (cos‘0) = 1 (see cos0 14588) and (exp‘1) = e (see df-e 14507). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of , and calls the operation "relative product." (Contributed by NM, 4-Jul-1994.)
(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
 
Definitiondf-dm 4942* Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → dom 𝐹 = {2, 3} (ex-dm 26426). Another example is the domain of the complex arctangent, (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) (for proof see atandm 24290). Contrast with range (defined in df-rn 4943). For alternate definitions see dfdm2 5474, dfdm3 5124, and dfdm4 5129. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
 
Definitiondf-rn 4943 Define the range of a class. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9} (ex-rn 26427). Contrast with domain (defined in df-dm 4942). For alternate definitions, see dfrn2 5125, dfrn3 5126, and dfrn4 5403. The notation "ran " is used by Enderton; other authors sometimes use script R or script W. (Contributed by NM, 1-Aug-1994.)
ran 𝐴 = dom 𝐴
 
Definitiondf-res 4944 Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 14558) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 14506 defines the exponential function, which normally allows the exponent to be a complex number). Another example is that (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩} (ex-res 26428). (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
 
Definitiondf-ima 4945 Define the image of a class (as restricted by another class). Definition 6.6(2) of [TakeutiZaring] p. 24. For example, (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {6} (ex-ima 26429). Contrast with restriction (df-res 4944) and range (df-rn 4943). For an alternate definition, see dfima2 5278. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵) = ran (𝐴𝐵)
 
Theoremxpeq1 4946 Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994.)
(𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
 
Theoremxpeq2 4947 Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.)
(𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
 
Theoremelxpi 4948* Membership in a Cartesian product. Uses fewer axioms than elxp 4949. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
 
Theoremelxp 4949* Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
 
Theoremelxp2 4950* Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremelxp2OLD 4951* Obsolete proof of elxp2 4950 as of 13-Aug-2021. (Contributed by NM, 23-Feb-2004.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremxpeq12 4952 Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
 
Theoremxpeq1i 4953 Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐴 × 𝐶) = (𝐵 × 𝐶)
 
Theoremxpeq2i 4954 Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐶 × 𝐴) = (𝐶 × 𝐵)
 
Theoremxpeq12i 4955 Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴 × 𝐶) = (𝐵 × 𝐷)
 
Theoremxpeq1d 4956 Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
 
Theoremxpeq2d 4957 Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
 
Theoremxpeq12d 4958 Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))
 
Theoremsqxpeqd 4959 Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
 
Theoremnfxp 4960 Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴 × 𝐵)
 
Theorem0nelxp 4961 The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.)
¬ ∅ ∈ (𝐴 × 𝐵)
 
Theorem0nelxpOLD 4962 Obsolete proof of 0nelxp 4961 as of 13-Aug-2021. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
¬ ∅ ∈ (𝐴 × 𝐵)
 
Theorem0nelelxp 4963 A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
(𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)
 
Theoremopelxp 4964 Ordered pair membership in a Cartesian product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
 
Theorembrxp 4965 Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.)
(𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
 
Theoremopelxpi 4966 Ordered pair membership in a Cartesian product (implication). (Contributed by NM, 28-May-1995.)
((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
 
Theoremopelxpd 4967 Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
 
Theoremopelxp1 4968 The first member of an ordered pair of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)
 
Theoremopelxp2 4969 The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐵𝐷)
 
Theoremotelxp1 4970 The first member of an ordered triple of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.)
(⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴𝑅)
 
Theoremotel3xp 4971 An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.)
((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴𝑋𝐵𝑌𝐶𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))
 
Theoremrabxp 4972* Membership in a class builder restricted to a Cartesian product. (Contributed by NM, 20-Feb-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}
 
Theorembrrelex12 4973 A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorembrrelex 4974 A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
 
Theorembrrelex2 4975 A true binary relation on a relation implies the second argument is a set. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
 
Theorembrrelexi 4976 The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.)
Rel 𝑅       (𝐴𝑅𝐵𝐴 ∈ V)
 
Theorembrrelex2i 4977 The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐵 ∈ V)
 
Theoremnprrel 4978 No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
Rel 𝑅    &    ¬ 𝐴 ∈ V        ¬ 𝐴𝑅𝐵
 
Theoremfconstmpt 4979* Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
(𝐴 × {𝐵}) = (𝑥𝐴𝐵)
 
Theoremvtoclr 4980* Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Rel 𝑅    &   ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)       ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremopelvvg 4981 Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.)
((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
 
Theoremopelvv 4982 Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ ∈ (V × V)
 
Theoremopthprc 4983 Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.)
(((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 
Theorembrel 4984 Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝑅 ⊆ (𝐶 × 𝐷)       (𝐴𝑅𝐵 → (𝐴𝐶𝐵𝐷))
 
Theorembrab2a 4985* Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 9-Nov-2015.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}       (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
 
Theoremelxp3 4986* Membership in a Cartesian product. (Contributed by NM, 5-Mar-1995.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)))
 
Theoremopeliunxp 4987 Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
(⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))
 
Theoremxpundi 4988 Distributive law for Cartesian product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
(𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))
 
Theoremxpundir 4989 Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))
 
Theoremxpiundi 4990* Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
(𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
 
Theoremxpiundir 4991* Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
( 𝑥𝐴 𝐵 × 𝐶) = 𝑥𝐴 (𝐵 × 𝐶)
 
Theoremiunxpconst 4992* Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
 
Theoremxpun 4993 The Cartesian product of two unions. (Contributed by NM, 12-Aug-2004.)
((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
 
Theoremelvv 4994* Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremelvvv 4995* Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
(𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
 
Theoremelvvuni 4996 An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
(𝐴 ∈ (V × V) → 𝐴𝐴)
 
Theorembrinxp2 4997 Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
 
Theorembrinxp 4998 Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))
 
Theorempoinxp 4999 Intersection of partial order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
(𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
 
Theoremsoinxp 5000 Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
(𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >