Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidlmax Structured version   Visualization version   GIF version

Theorem maxidlmax 34155
 Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
maxidlnr.1 𝐺 = (1st𝑅)
maxidlnr.2 𝑋 = ran 𝐺
Assertion
Ref Expression
maxidlmax (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝑋))

Proof of Theorem maxidlmax
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 maxidlnr.1 . . . . . . 7 𝐺 = (1st𝑅)
2 maxidlnr.2 . . . . . . 7 𝑋 = ran 𝐺
31, 2ismaxidl 34152 . . . . . 6 (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
43biimpa 502 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))))
54simp3d 1139 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))
6 sseq2 3768 . . . . . 6 (𝑗 = 𝐼 → (𝑀𝑗𝑀𝐼))
7 eqeq1 2764 . . . . . . 7 (𝑗 = 𝐼 → (𝑗 = 𝑀𝐼 = 𝑀))
8 eqeq1 2764 . . . . . . 7 (𝑗 = 𝐼 → (𝑗 = 𝑋𝐼 = 𝑋))
97, 8orbi12d 748 . . . . . 6 (𝑗 = 𝐼 → ((𝑗 = 𝑀𝑗 = 𝑋) ↔ (𝐼 = 𝑀𝐼 = 𝑋)))
106, 9imbi12d 333 . . . . 5 (𝑗 = 𝐼 → ((𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)) ↔ (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝑋))))
1110rspcva 3447 . . . 4 ((𝐼 ∈ (Idl‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝑋)))
125, 11sylan2 492 . . 3 ((𝐼 ∈ (Idl‘𝑅) ∧ (𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅))) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝑋)))
1312ancoms 468 . 2 (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝑋)))
1413impr 650 1 (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050   ⊆ wss 3715  ran crn 5267  ‘cfv 6049  1st c1st 7331  RingOpscrngo 34006  Idlcidl 34119  MaxIdlcmaxidl 34121 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fv 6057  df-maxidl 34124 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator