MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoeq123 Structured version   Visualization version   GIF version

Theorem mpoeq123 7226
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
mpoeq123 ((𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)) → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐷,𝑦   𝑦,𝐸
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐸(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem mpoeq123
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . 4 𝑥 𝐴 = 𝐷
2 nfra1 3219 . . . 4 𝑥𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)
31, 2nfan 1900 . . 3 𝑥(𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹))
4 nfv 1915 . . . 4 𝑦 𝐴 = 𝐷
5 nfcv 2977 . . . . 5 𝑦𝐴
6 nfv 1915 . . . . . 6 𝑦 𝐵 = 𝐸
7 nfra1 3219 . . . . . 6 𝑦𝑦𝐵 𝐶 = 𝐹
86, 7nfan 1900 . . . . 5 𝑦(𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)
95, 8nfralw 3225 . . . 4 𝑦𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)
104, 9nfan 1900 . . 3 𝑦(𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹))
11 nfv 1915 . . 3 𝑧(𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹))
12 rsp 3205 . . . . . . 7 (∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹) → (𝑥𝐴 → (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)))
13 rsp 3205 . . . . . . . . . 10 (∀𝑦𝐵 𝐶 = 𝐹 → (𝑦𝐵𝐶 = 𝐹))
14 eqeq2 2833 . . . . . . . . . 10 (𝐶 = 𝐹 → (𝑧 = 𝐶𝑧 = 𝐹))
1513, 14syl6 35 . . . . . . . . 9 (∀𝑦𝐵 𝐶 = 𝐹 → (𝑦𝐵 → (𝑧 = 𝐶𝑧 = 𝐹)))
1615pm5.32d 579 . . . . . . . 8 (∀𝑦𝐵 𝐶 = 𝐹 → ((𝑦𝐵𝑧 = 𝐶) ↔ (𝑦𝐵𝑧 = 𝐹)))
17 eleq2 2901 . . . . . . . . 9 (𝐵 = 𝐸 → (𝑦𝐵𝑦𝐸))
1817anbi1d 631 . . . . . . . 8 (𝐵 = 𝐸 → ((𝑦𝐵𝑧 = 𝐹) ↔ (𝑦𝐸𝑧 = 𝐹)))
1916, 18sylan9bbr 513 . . . . . . 7 ((𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹) → ((𝑦𝐵𝑧 = 𝐶) ↔ (𝑦𝐸𝑧 = 𝐹)))
2012, 19syl6 35 . . . . . 6 (∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹) → (𝑥𝐴 → ((𝑦𝐵𝑧 = 𝐶) ↔ (𝑦𝐸𝑧 = 𝐹))))
2120pm5.32d 579 . . . . 5 (∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹) → ((𝑥𝐴 ∧ (𝑦𝐵𝑧 = 𝐶)) ↔ (𝑥𝐴 ∧ (𝑦𝐸𝑧 = 𝐹))))
22 eleq2 2901 . . . . . 6 (𝐴 = 𝐷 → (𝑥𝐴𝑥𝐷))
2322anbi1d 631 . . . . 5 (𝐴 = 𝐷 → ((𝑥𝐴 ∧ (𝑦𝐸𝑧 = 𝐹)) ↔ (𝑥𝐷 ∧ (𝑦𝐸𝑧 = 𝐹))))
2421, 23sylan9bbr 513 . . . 4 ((𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)) → ((𝑥𝐴 ∧ (𝑦𝐵𝑧 = 𝐶)) ↔ (𝑥𝐷 ∧ (𝑦𝐸𝑧 = 𝐹))))
25 anass 471 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = 𝐶)))
26 anass 471 . . . 4 (((𝑥𝐷𝑦𝐸) ∧ 𝑧 = 𝐹) ↔ (𝑥𝐷 ∧ (𝑦𝐸𝑧 = 𝐹)))
2724, 25, 263bitr4g 316 . . 3 ((𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)) → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐷𝑦𝐸) ∧ 𝑧 = 𝐹)))
283, 10, 11, 27oprabbid 7219 . 2 ((𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐷𝑦𝐸) ∧ 𝑧 = 𝐹)})
29 df-mpo 7161 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
30 df-mpo 7161 . 2 (𝑥𝐷, 𝑦𝐸𝐹) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐷𝑦𝐸) ∧ 𝑧 = 𝐹)}
3128, 29, 303eqtr4g 2881 1 ((𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)) → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  {coprab 7157  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-oprab 7160  df-mpo 7161
This theorem is referenced by:  mpoeq12  7227  mapxpen  8683  pmatcollpw2lem  21385  xkoptsub  22262  xkocnv  22422  matunitlindflem1  34903
  Copyright terms: Public domain W3C validator