Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem1 Structured version   Visualization version   GIF version

Theorem matunitlindflem1 34903
Description: One direction of matunitlindf 34905. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))

Proof of Theorem matunitlindflem1
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfld 19511 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
21simplbi 500 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
3 drngring 19509 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
42, 3syl 17 . . 3 (𝑅 ∈ Field → 𝑅 ∈ Ring)
5 eqid 2821 . . . . . . . . 9 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
65frlmlmod 20893 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
76adantlr 713 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
8 simpr 487 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝐼 ∈ (Fin ∖ {∅}))
9 eldifi 4103 . . . . . . . . . 10 (𝐼 ∈ (Fin ∖ {∅}) → 𝐼 ∈ Fin)
10 eqid 2821 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
115, 10frlmfibas 20906 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
129, 11sylan2 594 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
13 fvex 6683 . . . . . . . . . 10 (Base‘𝑅) ∈ V
14 curf 34885 . . . . . . . . . 10 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
1513, 14mp3an3 1446 . . . . . . . . 9 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
16 feq3 6497 . . . . . . . . . 10 (((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
1716biimpa 479 . . . . . . . . 9 ((((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1812, 15, 17syl2an 597 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}))) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1918anandirs 677 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
20 eqid 2821 . . . . . . . 8 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
21 eqid 2821 . . . . . . . 8 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
22 eqid 2821 . . . . . . . 8 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
23 eqid 2821 . . . . . . . 8 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
24 eqid 2821 . . . . . . . 8 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
25 eqid 2821 . . . . . . . 8 (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))
2620, 21, 22, 23, 24, 25islindf4 20982 . . . . . . 7 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
277, 8, 19, 26syl3anc 1367 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
285frlmsca 20897 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
2928fvoveq1d 7178 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (Base‘(𝑅 freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3012, 29eqtrd 2856 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3130adantlr 713 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
32 elmapi 8428 . . . . . . . . . 10 (𝑓 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑓:𝐼⟶(Base‘𝑅))
33 ffn 6514 . . . . . . . . . . . . . . 15 (𝑓:𝐼⟶(Base‘𝑅) → 𝑓 Fn 𝐼)
3433adantl 484 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑓 Fn 𝐼)
3519ffnd 6515 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀 Fn 𝐼)
3635adantr 483 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
37 simplr 767 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ (Fin ∖ {∅}))
38 inidm 4195 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
39 eqidd 2822 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) = (𝑓𝑛))
40 eqidd 2822 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) = (curry 𝑀𝑛))
4134, 36, 37, 37, 38, 39, 40offval 7416 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))))
42 simpllr 774 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → 𝐼 ∈ (Fin ∖ {∅}))
43 ffvelrn 6849 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4443adantll 712 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4519ffvelrnda 6851 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
4645adantlr 713 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
47 eqid 2821 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
485, 20, 10, 42, 44, 46, 22, 47frlmvscafval 20910 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = ((𝐼 × {(𝑓𝑛)}) ∘f (.r𝑅)(curry 𝑀𝑛)))
49 fvex 6683 . . . . . . . . . . . . . . . . 17 (𝑓𝑛) ∈ V
50 fnconstg 6567 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ∈ V → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5149, 50mp1i 13 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5215ffvelrnda 6851 . . . . . . . . . . . . . . . . . . 19 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑m 𝐼))
53 elmapfn 8429 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5554adantlll 716 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5655adantlr 713 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5749fvconst2 6966 . . . . . . . . . . . . . . . . 17 (𝑘𝐼 → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
5857adantl 484 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
59 ffn 6514 . . . . . . . . . . . . . . . . . . . 20 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 Fn (𝐼 × 𝐼))
6059anim2i 618 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6160ancoms 461 . . . . . . . . . . . . . . . . . 18 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6261ad4ant23 751 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
63 curfv 34887 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑛𝐼𝑘𝐼) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
64633exp1 1348 . . . . . . . . . . . . . . . . . . 19 (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → (𝐼 ∈ (Fin ∖ {∅}) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6564com4r 94 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (Fin ∖ {∅}) → (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6665imp41 428 . . . . . . . . . . . . . . . . 17 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6762, 66sylanl1 678 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6851, 56, 42, 42, 38, 58, 67offval 7416 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝐼 × {(𝑓𝑛)}) ∘f (.r𝑅)(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
6948, 68eqtrd 2856 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
7069mpteq2dva 5161 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7141, 70eqtrd 2856 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7271oveq2d 7172 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
73 simplll 773 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
74 simp-4l 781 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
7543ad4ant23 751 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
76 fovrn 7318 . . . . . . . . . . . . . . . . 17 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7776ad5ant245 1357 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7810, 47ringcl 19311 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑓𝑛) ∈ (Base‘𝑅) ∧ (𝑛𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
7974, 75, 77, 78syl3anc 1367 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
8079fmpttd 6879 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
8180adantllr 717 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
82 elmapg 8419 . . . . . . . . . . . . . . . . 17 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8313, 82mpan 688 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8483adantl 484 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8512eleq2d 2898 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8684, 85bitr3d 283 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8786ad5ant13 755 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8881, 87mpbid 234 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
89 mptexg 6984 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
9089ralrimivw 3183 . . . . . . . . . . . . . . 15 (𝐼 ∈ (Fin ∖ {∅}) → ∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
91 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
9291fnmpt 6488 . . . . . . . . . . . . . . 15 (∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
9390, 92syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
94 fvexd 6685 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
9593, 9, 94fndmfifsupp 8846 . . . . . . . . . . . . 13 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
9695ad2antlr 725 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
975, 20, 23, 37, 37, 73, 88, 96frlmgsum 20916 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
9872, 97eqtr2d 2857 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
9932, 98sylan2 594 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
100 eqid 2821 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1015, 100frlm0 20898 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
102101ad4ant13 749 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
10399, 102eqeq12d 2837 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼))))
10428fveq2d 6674 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (0g𝑅) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼))))
105104sneqd 4579 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → {(0g𝑅)} = {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})
106105xpeq2d 5585 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))
107106eqeq2d 2832 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
108107ad4ant13 749 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
109103, 108imbi12d 347 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ (((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11031, 109raleqbidva 3425 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11127, 110bitr4d 284 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
112111notbid 320 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
113 rexanali 3265 . . . 4 (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})))
114112, 113syl6bbr 291 . . 3 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
1154, 114sylanl1 678 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
116 fconstfv 6975 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
117 fvex 6683 . . . . . . . . . . . . 13 (0g𝑅) ∈ V
118117fconst2 6967 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ 𝑓 = (𝐼 × {(0g𝑅)}))
119116, 118sylbb1 239 . . . . . . . . . . 11 ((𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)) → 𝑓 = (𝐼 × {(0g𝑅)}))
120119ex 415 . . . . . . . . . 10 (𝑓 Fn 𝐼 → (∀𝑖𝐼 (𝑓𝑖) = (0g𝑅) → 𝑓 = (𝐼 × {(0g𝑅)})))
121120con3d 155 . . . . . . . . 9 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
122 df-ne 3017 . . . . . . . . . . 11 ((𝑓𝑖) ≠ (0g𝑅) ↔ ¬ (𝑓𝑖) = (0g𝑅))
123122rexbii 3247 . . . . . . . . . 10 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅))
124 rexnal 3238 . . . . . . . . . 10 (∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
125123, 124bitri 277 . . . . . . . . 9 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
126121, 125syl6ibr 254 . . . . . . . 8 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
12733, 126syl 17 . . . . . . 7 (𝑓:𝐼⟶(Base‘𝑅) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
128127adantl 484 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
129 neldifsn 4725 . . . . . . . . . . 11 ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})
130 difss 4108 . . . . . . . . . . 11 (𝐼 ∖ {𝑖}) ⊆ 𝐼
131 diffi 8750 . . . . . . . . . . . . 13 (𝐼 ∈ Fin → (𝐼 ∖ {𝑖}) ∈ Fin)
132131ad4antlr 731 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → (𝐼 ∖ {𝑖}) ∈ Fin)
133 eleq2 2901 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → (𝑖𝑦𝑖 ∈ ∅))
134133notbid 320 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ ∅))
135 sseq1 3992 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑦𝐼 ↔ ∅ ⊆ 𝐼))
136134, 135anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)))
137136anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = ∅ → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼))))
138 mpteq1 5154 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
139 mpt0 6490 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅
140138, 139syl6eq 2872 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅)
141140oveq2d 7172 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg ∅))
142100gsum0 17894 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
143141, 142syl6eq 2872 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (0g𝑅))
144143oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)))
145144ifeq1d 4485 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
146145mpoeq3dv 7233 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
147146fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
148147eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
149137, 148imbi12d 347 . . . . . . . . . . . . 13 (𝑦 = ∅ → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
150 elequ2 2129 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑖𝑦𝑖𝑥))
151150notbid 320 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (¬ 𝑖𝑦 ↔ ¬ 𝑖𝑥))
152 sseq1 3992 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑦𝐼𝑥𝐼))
153151, 152anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖𝑥𝑥𝐼)))
154153anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼))))
155 mpteq1 5154 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
156155oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
157156oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
158157ifeq1d 4485 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
159158mpoeq3dv 7233 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
160159fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
161160eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
162154, 161imbi12d 347 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
163 eleq2 2901 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑖𝑦𝑖 ∈ (𝑥 ∪ {𝑧})))
164163notbid 320 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝑥 ∪ {𝑧})))
165 sseq1 3992 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
166164, 165anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)))
167166anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))))
168 mpteq1 5154 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
169168oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
170169oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
171170ifeq1d 4485 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
172171mpoeq3dv 7233 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
173172fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
174173eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
175167, 174imbi12d 347 . . . . . . . . . . . . 13 (𝑦 = (𝑥 ∪ {𝑧}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
176 eleq2 2901 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑖𝑦𝑖 ∈ (𝐼 ∖ {𝑖})))
177176notbid 320 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})))
178 sseq1 3992 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑦𝐼 ↔ (𝐼 ∖ {𝑖}) ⊆ 𝐼))
179177, 178anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)))
180179anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼))))
181 mpteq1 5154 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
182181oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
183182oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
184183ifeq1d 4485 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
185184mpoeq3dv 7233 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
186185fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
187186eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
188180, 187imbi12d 347 . . . . . . . . . . . . 13 (𝑦 = (𝐼 ∖ {𝑖}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
189 fnov 7282 . . . . . . . . . . . . . . . . . 18 (𝑀 Fn (𝐼 × 𝐼) ↔ 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
19059, 189sylib 220 . . . . . . . . . . . . . . . . 17 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
191190adantl 484 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
192 ringgrp 19302 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1934, 192syl 17 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Field → 𝑅 ∈ Grp)
194 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
195194equcoms 2027 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
196195oveq2d 7172 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)))
197 simp1l 1193 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → 𝑅 ∈ Grp)
198 fovrn 7318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
1991983adant1l 1172 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
200 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑅) = (+g𝑅)
20110, 200, 100grplid 18133 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ (𝑗𝑀𝑘) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
202197, 199, 201syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
203196, 202sylan9eqr 2878 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ 𝑗 = 𝑖) → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = (𝑗𝑀𝑘))
204 eqidd 2822 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ ¬ 𝑗 = 𝑖) → (𝑗𝑀𝑘) = (𝑗𝑀𝑘))
205203, 204ifeqda 4502 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
206205mpoeq3dva 7231 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
207193, 206sylan 582 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
208191, 207eqtr4d 2859 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
209208fveq2d 6674 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
210209ad4antr 730 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
211 elun1 4152 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑥𝑖 ∈ (𝑥 ∪ {𝑧}))
212211con3i 157 . . . . . . . . . . . . . . . . . . . 20 𝑖 ∈ (𝑥 ∪ {𝑧}) → ¬ 𝑖𝑥)
213 ssun1 4148 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ⊆ (𝑥 ∪ {𝑧})
214 sstr 3975 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
215213, 214mpan 688 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼)
216212, 215anim12i 614 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (¬ 𝑖𝑥𝑥𝐼))
217216anim2i 618 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
218217adantr 483 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
219 velsn 4583 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧)
220 elun2 4153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} → 𝑖 ∈ (𝑥 ∪ {𝑧}))
221219, 220sylbir 237 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑧𝑖 ∈ (𝑥 ∪ {𝑧}))
222221necon3bi 3042 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ (𝑥 ∪ {𝑧}) → 𝑖𝑧)
223222anim1i 616 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
224 ringcmn 19331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2254, 224syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Field → 𝑅 ∈ CMnd)
226225ad7antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
227 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
228215adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
229 ssfi 8738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → 𝑥 ∈ Fin)
230227, 228, 229syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin)
231230ad5ant13 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑥 ∈ Fin)
232215sselda 3967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑛𝑥) → 𝑛𝐼)
233232adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
234233ad4ant24 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
2354ad6antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → 𝑅 ∈ Ring)
2362ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
237 ffvelrn 6849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
238237anim2i 618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
239238anassrs 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
240 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (invr𝑅) = (invr𝑅)
24110, 100, 240drnginvrcl 19519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
2422413expa 1114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
243239, 242sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
244243anasss 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
245236, 244sylanl1 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
246245ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
24743ad5ant25 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
248 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
249763expa 1114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
250249an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
251248, 250sylanl1 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
252235, 247, 251, 78syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
25310, 47ringcl 19311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
254235, 246, 252, 253syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
255254adantllr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
256234, 255syldan 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
257256adantllr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
258 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑧 ∈ V
259258a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑧 ∈ V)
260 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ¬ 𝑧𝑥)
261 ssun2 4149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {𝑧} ⊆ (𝑥 ∪ {𝑧})
262 sstr 3975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({𝑧} ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → {𝑧} ⊆ 𝐼)
263261, 262mpan 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → {𝑧} ⊆ 𝐼)
264258snss 4718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧𝐼 ↔ {𝑧} ⊆ 𝐼)
265263, 264sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑧𝐼)
266265adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑧𝐼)
2674ad6antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
2684ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → 𝑅 ∈ Ring)
269245adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
270 ffvelrn 6849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
271270ad4ant24 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
27210, 47ringcl 19311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
273268, 269, 271, 272syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
274273adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
275 fovrn 7318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
2762753expa 1114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
277248, 276sylanl1 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
27810, 47ringcl 19311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅)) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
279267, 274, 277, 278syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
280266, 279sylanl2 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
281280adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
282 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑓𝑛) = (𝑓𝑧))
283 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑛𝑀𝑘) = (𝑧𝑀𝑘))
284282, 283oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 = 𝑧 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘)))
285284oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 𝑧 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
286245ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
287270ad5ant24 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
28810, 47ringass 19314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
289267, 286, 287, 277, 288syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
290289eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
291266, 290sylanl2 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
292285, 291sylan9eqr 2878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
293292adantllr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
29410, 200, 226, 231, 257, 259, 260, 281, 293gsumunsnd 19078 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
295294oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)))
296 ringabl 19330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
2974, 296syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Field → 𝑅 ∈ Abel)
298297ad6antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Abel)
299225ad6antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
300 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑥 ∈ V
301300a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑥 ∈ V)
302 ssel2 3962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥𝐼𝑛𝑥) → 𝑛𝐼)
303302, 254sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑥𝐼𝑛𝑥)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
304303anassrs 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
305304fmpttd 6879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
306305an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
307 ovex 7189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V
308 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
309307, 308fnmpti 6491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥
310309a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥)
311 fvexd 6685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (0g𝑅) ∈ V)
312310, 229, 311fndmfifsupp 8846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
313312adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
314313ad5ant14 756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
31510, 100, 299, 301, 306, 314gsumcl 19035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
316215, 315sylanl2 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
317265, 279sylanl2 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
318 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
319 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅)) → 𝑖𝐼)
320318, 319anim12i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
321320adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
322 fovrn 7318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
3233223expa 1114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
324321, 323sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
32510, 200, 298, 316, 317, 324abl32 18928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
326325adantlrl 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
327326adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
328295, 327eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
329328ifeq1d 4485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
3303293adant2 1127 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
331330mpoeq3dva 7231 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))
332331fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
333 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
3341simprbi 499 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ Field → 𝑅 ∈ CRing)
335334ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ CRing)
336 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ Fin)
337193ad6antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Grp)
338320adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
339338, 323sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
34010, 200grpcl 18111 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Grp ∧ (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
341337, 315, 339, 340syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
342228, 341sylanl2 679 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
343248, 266anim12i 614 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼))
344343, 276sylan 582 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
345 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
346345, 198syl3an1 1159 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
347266, 273sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
348 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝐼)
349265ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧𝐼)
350 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝑧)
351333, 10, 200, 47, 335, 336, 342, 344, 346, 347, 348, 349, 350mdetero 21219 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
352351adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
353332, 352eqtrd 2856 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
354 iftrue 4473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑧𝑀𝑘))
355 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → (𝑗𝑀𝑘) = (𝑧𝑀𝑘))
356354, 355eqtr4d 2859 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
357 iffalse 4476 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
358356, 357pm2.61i 184 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)
359 ifeq2 4472 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
360358, 359mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
361360mpoeq3ia 7232 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
362361fveq2i 6673 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
363 ifeq2 4472 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
364358, 363mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
365364mpoeq3ia 7232 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
366365fveq2i 6673 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
367353, 362, 3663eqtr3g 2879 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
368223, 367sylanl2 679 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
369368eqeq2d 2832 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
370369biimprd 250 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
371218, 370embantd 59 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
372371expcom 416 . . . . . . . . . . . . . . 15 𝑧𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
373372com23 86 . . . . . . . . . . . . . 14 𝑧𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
374373adantl 484 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
375149, 162, 175, 188, 210, 374findcard2s 8759 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑖}) ∈ Fin → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
376132, 375mpcom 38 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
377129, 130, 376mpanr12 703 . . . . . . . . . 10 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
378377adantlr 713 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
379 eqid 2821 . . . . . . . . . . . 12 𝐼 = 𝐼
380 fconstmpt 5614 . . . . . . . . . . . . . . . . 17 (𝐼 × {(0g𝑅)}) = (𝑘𝐼 ↦ (0g𝑅))
381380eqeq2i 2834 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)))
382 ovex 7189 . . . . . . . . . . . . . . . . . 18 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
383382rgenw 3150 . . . . . . . . . . . . . . . . 17 𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
384 mpteqb 6787 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)))
385383, 384ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
386381, 385bitri 277 . . . . . . . . . . . . . . 15 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
387225ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
388 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
389 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
390307, 389fnmpti 6491 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼
391390a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
392 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
393 fvexd 6685 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (0g𝑅) ∈ V)
394391, 392, 393fndmfifsupp 8846 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
395394ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
396 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑖𝐼)
397320, 323sylan 582 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
398 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
399 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑛𝑀𝑘) = (𝑖𝑀𝑘))
400398, 399oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑖 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘)))
401400oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
402 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ Field)
4032, 237anim12i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ Field ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
404403anassrs 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
405 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (1r𝑅) = (1r𝑅)
40610, 100, 47, 405, 240drnginvrl 19521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
4074063expa 1114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
408404, 407sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
409408anasss 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
410409oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
411402, 410sylanl1 678 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
412411adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
4134ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
414245adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
415237ad2ant2lr 746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑓𝑖) ∈ (Base‘𝑅))
416415adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
41710, 47ringass 19314 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
418413, 414, 416, 397, 417syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
4194adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
4204193ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → 𝑅 ∈ Ring)
4213223adant1l 1172 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
42210, 47, 405ringlidm 19321 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
423420, 421, 422syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
424423ad5ant145 1365 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
425424adantlrr 719 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
426412, 418, 4253eqtr3d 2864 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))) = (𝑖𝑀𝑘))
427401, 426sylan9eqr 2878 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑖) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑖𝑀𝑘))
42810, 200, 387, 388, 395, 254, 396, 397, 427gsumdifsnd 19081 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
429 ovex 7189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ V
430 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))
431429, 430fnmpti 6491 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼
432431a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼)
433432, 392, 393fndmfifsupp 8846 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
434433ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
43510, 100, 200, 47, 413, 388, 414, 252, 434gsummulc2 19357 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
436428, 435eqtr3d 2858 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
437436adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
438 oveq2 7164 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
439438adantl 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
4404ad4antr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ Ring)
44110, 47, 100ringrz 19338 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
442440, 245, 441syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
443442ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
444437, 439, 4433eqtrd 2860 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (0g𝑅))
445444ifeq1d 4485 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
446445ex 415 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
447446ralimdva 3177 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
448447imp 409 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
449386, 448sylan2b 595 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
450449, 379jctil 522 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
451450ralrimivw 3183 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
452 mpoeq123 7226 . . . . . . . . . . . 12 ((𝐼 = 𝐼 ∧ ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
453379, 451, 452sylancr 589 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
454453an32s 650 . . . . . . . . . 10 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
455454fveq2d 6674 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))))
456334ad3antrrr 728 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ CRing)
457 simplr 767 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝐼 ∈ Fin)
458 simpllr 774 . . . . . . . . . . . 12 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
459458, 198syl3an1 1159 . . . . . . . . . . 11 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
460 simprl 769 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑖𝐼)
461333, 10, 100, 456, 457, 459, 460mdetr0 21214 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
462461ad4ant14 750 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
463378, 455, 4623eqtrd 2860 . . . . . . . 8 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅))
464463rexlimdvaa 3285 . . . . . . 7 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
465464expimpd 456 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
466128, 465sylan2d 606 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
46732, 466sylan2 594 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
468467rexlimdva 3284 . . 3 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
4699, 468sylan2 594 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
470115, 469sylbid 242 1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cun 3934  wss 3936  c0 4291  ifcif 4467  {csn 4567   class class class wbr 5066  cmpt 5146   × cxp 5553   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  f cof 7407  curry ccur 7931  m cmap 8406  Fincfn 8509   finSupp cfsupp 8833  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713   Σg cgsu 16714  Grpcgrp 18103  CMndccmn 18906  Abelcabl 18907  1rcur 19251  Ringcrg 19297  CRingccrg 19298  invrcinvr 19421  DivRingcdr 19502  Fieldcfield 19503  LModclmod 19634   freeLMod cfrlm 20890   LIndF clindf 20948   maDet cmdat 21193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-cur 7933  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-splice 14112  df-reverse 14121  df-s2 14210  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-gim 18399  df-cntz 18447  df-oppg 18474  df-symg 18496  df-pmtr 18570  df-psgn 18619  df-evpm 18620  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lmhm 19794  df-lbs 19847  df-sra 19944  df-rgmod 19945  df-nzr 20031  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-dsmm 20876  df-frlm 20891  df-uvc 20927  df-lindf 20950  df-mat 21017  df-mdet 21194
This theorem is referenced by:  matunitlindf  34905
  Copyright terms: Public domain W3C validator