MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12f Structured version   Visualization version   GIF version

Theorem mpteq12f 5142
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpteq12f ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))

Proof of Theorem mpteq12f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfa1 2154 . . . 4 𝑥𝑥 𝐴 = 𝐶
2 nfra1 3218 . . . 4 𝑥𝑥𝐴 𝐵 = 𝐷
31, 2nfan 1899 . . 3 𝑥(∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷)
4 nfv 1914 . . 3 𝑦(∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷)
5 rspa 3205 . . . . . 6 ((∀𝑥𝐴 𝐵 = 𝐷𝑥𝐴) → 𝐵 = 𝐷)
65eqeq2d 2831 . . . . 5 ((∀𝑥𝐴 𝐵 = 𝐷𝑥𝐴) → (𝑦 = 𝐵𝑦 = 𝐷))
76pm5.32da 581 . . . 4 (∀𝑥𝐴 𝐵 = 𝐷 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑦 = 𝐷)))
8 sp 2181 . . . . . 6 (∀𝑥 𝐴 = 𝐶𝐴 = 𝐶)
98eleq2d 2897 . . . . 5 (∀𝑥 𝐴 = 𝐶 → (𝑥𝐴𝑥𝐶))
109anbi1d 631 . . . 4 (∀𝑥 𝐴 = 𝐶 → ((𝑥𝐴𝑦 = 𝐷) ↔ (𝑥𝐶𝑦 = 𝐷)))
117, 10sylan9bbr 513 . . 3 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐷)))
123, 4, 11opabbid 5124 . 2 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)})
13 df-mpt 5140 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
14 df-mpt 5140 . 2 (𝑥𝐶𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)}
1512, 13, 143eqtr4g 2880 1 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1534   = wceq 1536  wcel 2113  wral 3137  {copab 5121  cmpt 5139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-ral 3142  df-opab 5122  df-mpt 5140
This theorem is referenced by:  mpteq12dva  5143  mpteq12  5146  mpteq2ia  5150  mpteq2da  5153  esumeq12dvaf  31311  refsum2cnlem1  41368  mpteq1df  41580  mpteq12da  41587  smfsupmpt  43163  smfinflem  43165  smfinfmpt  43167
  Copyright terms: Public domain W3C validator