MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiota Structured version   Visualization version   GIF version

Theorem opabiota 6746
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.)
Hypotheses
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
opabiota.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
opabiota (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem opabiota
StepHypRef Expression
1 fveq2 6670 . . 3 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2 opabiota.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
32iotabidv 6339 . . 3 (𝑥 = 𝐵 → (℩𝑦𝜑) = (℩𝑦𝜓))
41, 3eqeq12d 2837 . 2 (𝑥 = 𝐵 → ((𝐹𝑥) = (℩𝑦𝜑) ↔ (𝐹𝐵) = (℩𝑦𝜓)))
5 vex 3497 . . . 4 𝑥 ∈ V
65eldm 5769 . . 3 (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦)
7 nfiota1 6316 . . . . 5 𝑦(℩𝑦𝜑)
87nfeq2 2995 . . . 4 𝑦(𝐹𝑥) = (℩𝑦𝜑)
9 opabiota.1 . . . . . . 7 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
109opabiotafun 6744 . . . . . 6 Fun 𝐹
11 funbrfv 6716 . . . . . 6 (Fun 𝐹 → (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦))
1210, 11ax-mp 5 . . . . 5 (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦)
13 df-br 5067 . . . . . . . 8 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
149eleq2i 2904 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
15 opabidw 5412 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ {𝑦𝜑} = {𝑦})
1613, 14, 153bitri 299 . . . . . . 7 (𝑥𝐹𝑦 ↔ {𝑦𝜑} = {𝑦})
17 vsnid 4602 . . . . . . . . 9 𝑦 ∈ {𝑦}
18 id 22 . . . . . . . . 9 ({𝑦𝜑} = {𝑦} → {𝑦𝜑} = {𝑦})
1917, 18eleqtrrid 2920 . . . . . . . 8 ({𝑦𝜑} = {𝑦} → 𝑦 ∈ {𝑦𝜑})
20 abid 2803 . . . . . . . 8 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
2119, 20sylib 220 . . . . . . 7 ({𝑦𝜑} = {𝑦} → 𝜑)
2216, 21sylbi 219 . . . . . 6 (𝑥𝐹𝑦𝜑)
23 vex 3497 . . . . . . . . 9 𝑦 ∈ V
245, 23breldm 5777 . . . . . . . 8 (𝑥𝐹𝑦𝑥 ∈ dom 𝐹)
259opabiotadm 6745 . . . . . . . . 9 dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
2625abeq2i 2948 . . . . . . . 8 (𝑥 ∈ dom 𝐹 ↔ ∃!𝑦𝜑)
2724, 26sylib 220 . . . . . . 7 (𝑥𝐹𝑦 → ∃!𝑦𝜑)
28 iota1 6332 . . . . . . 7 (∃!𝑦𝜑 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
2927, 28syl 17 . . . . . 6 (𝑥𝐹𝑦 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
3022, 29mpbid 234 . . . . 5 (𝑥𝐹𝑦 → (℩𝑦𝜑) = 𝑦)
3112, 30eqtr4d 2859 . . . 4 (𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
328, 31exlimi 2217 . . 3 (∃𝑦 𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
336, 32sylbi 219 . 2 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) = (℩𝑦𝜑))
344, 33vtoclga 3574 1 (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wex 1780  wcel 2114  ∃!weu 2653  {cab 2799  {csn 4567  cop 4573   class class class wbr 5066  {copab 5128  dom cdm 5555  cio 6312  Fun wfun 6349  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator