Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiota Structured version   Visualization version   GIF version

Theorem opabiota 6228
 Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.)
Hypotheses
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
opabiota.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
opabiota (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem opabiota
StepHypRef Expression
1 fveq2 6158 . . 3 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2 opabiota.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
32iotabidv 5841 . . 3 (𝑥 = 𝐵 → (℩𝑦𝜑) = (℩𝑦𝜓))
41, 3eqeq12d 2636 . 2 (𝑥 = 𝐵 → ((𝐹𝑥) = (℩𝑦𝜑) ↔ (𝐹𝐵) = (℩𝑦𝜓)))
5 vex 3193 . . . 4 𝑥 ∈ V
65eldm 5291 . . 3 (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦)
7 nfiota1 5822 . . . . 5 𝑦(℩𝑦𝜑)
87nfeq2 2776 . . . 4 𝑦(𝐹𝑥) = (℩𝑦𝜑)
9 opabiota.1 . . . . . . 7 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
109opabiotafun 6226 . . . . . 6 Fun 𝐹
11 funbrfv 6201 . . . . . 6 (Fun 𝐹 → (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦))
1210, 11ax-mp 5 . . . . 5 (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦)
13 df-br 4624 . . . . . . . 8 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
149eleq2i 2690 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}})
15 opabid 4952 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} ↔ {𝑦𝜑} = {𝑦})
1613, 14, 153bitri 286 . . . . . . 7 (𝑥𝐹𝑦 ↔ {𝑦𝜑} = {𝑦})
17 vsnid 4187 . . . . . . . . 9 𝑦 ∈ {𝑦}
18 id 22 . . . . . . . . 9 ({𝑦𝜑} = {𝑦} → {𝑦𝜑} = {𝑦})
1917, 18syl5eleqr 2705 . . . . . . . 8 ({𝑦𝜑} = {𝑦} → 𝑦 ∈ {𝑦𝜑})
20 abid 2609 . . . . . . . 8 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
2119, 20sylib 208 . . . . . . 7 ({𝑦𝜑} = {𝑦} → 𝜑)
2216, 21sylbi 207 . . . . . 6 (𝑥𝐹𝑦𝜑)
23 vex 3193 . . . . . . . . 9 𝑦 ∈ V
245, 23breldm 5299 . . . . . . . 8 (𝑥𝐹𝑦𝑥 ∈ dom 𝐹)
259opabiotadm 6227 . . . . . . . . 9 dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
2625abeq2i 2732 . . . . . . . 8 (𝑥 ∈ dom 𝐹 ↔ ∃!𝑦𝜑)
2724, 26sylib 208 . . . . . . 7 (𝑥𝐹𝑦 → ∃!𝑦𝜑)
28 iota1 5834 . . . . . . 7 (∃!𝑦𝜑 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
2927, 28syl 17 . . . . . 6 (𝑥𝐹𝑦 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
3022, 29mpbid 222 . . . . 5 (𝑥𝐹𝑦 → (℩𝑦𝜑) = 𝑦)
3112, 30eqtr4d 2658 . . . 4 (𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
328, 31exlimi 2084 . . 3 (∃𝑦 𝑥𝐹𝑦 → (𝐹𝑥) = (℩𝑦𝜑))
336, 32sylbi 207 . 2 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) = (℩𝑦𝜑))
344, 33vtoclga 3262 1 (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480  ∃wex 1701   ∈ wcel 1987  ∃!weu 2469  {cab 2607  {csn 4155  ⟨cop 4161   class class class wbr 4623  {copab 4682  dom cdm 5084  ℩cio 5818  Fun wfun 5851  ‘cfv 5857 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator