![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prprc | Structured version Visualization version GIF version |
Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
prprc | ⊢ ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprc1 4332 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
2 | snprc 4285 | . . 3 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
3 | 2 | biimpi 206 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵} = ∅) |
4 | 1, 3 | sylan9eq 2705 | 1 ⊢ ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 {csn 4210 {cpr 4212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-un 3612 df-nul 3949 df-sn 4211 df-pr 4213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |