![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssdifcom1 | Structured version Visualization version GIF version |
Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
Ref | Expression |
---|---|
pssdifcom1 | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difcom 4189 | . . . 4 ⊢ ((𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ 𝐴) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ 𝐴)) |
3 | ssconb 3878 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | |
4 | 3 | ancoms 468 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
5 | 4 | notbid 307 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (¬ 𝐵 ⊆ (𝐶 ∖ 𝐴) ↔ ¬ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
6 | 2, 5 | anbi12d 749 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (((𝐶 ∖ 𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶 ∖ 𝐴)) ↔ ((𝐶 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶 ∖ 𝐵)))) |
7 | dfpss3 3827 | . 2 ⊢ ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ ((𝐶 ∖ 𝐴) ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ (𝐶 ∖ 𝐴))) | |
8 | dfpss3 3827 | . 2 ⊢ ((𝐶 ∖ 𝐵) ⊊ 𝐴 ↔ ((𝐶 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | |
9 | 6, 7, 8 | 3bitr4g 303 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∖ cdif 3704 ⊆ wss 3707 ⊊ wpss 3708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 |
This theorem is referenced by: isfin2-2 9325 compssiso 9380 |
Copyright terms: Public domain | W3C validator |