Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin2-2 Structured version   Visualization version   GIF version

Theorem isfin2-2 9254
 Description: FinII expressed in terms of minimal elements. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
isfin2-2 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin2-2
Dummy variables 𝑏 𝑐 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4276 . . . 4 (𝑦 ∈ 𝒫 𝒫 𝐴𝑦 ⊆ 𝒫 𝐴)
2 fin2i2 9253 . . . . 5 (((𝐴 ∈ FinII𝑦 ⊆ 𝒫 𝐴) ∧ (𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑦)
32ex 449 . . . 4 ((𝐴 ∈ FinII𝑦 ⊆ 𝒫 𝐴) → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
41, 3sylan2 492 . . 3 ((𝐴 ∈ FinII𝑦 ∈ 𝒫 𝒫 𝐴) → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
54ralrimiva 3068 . 2 (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
6 elpwi 4276 . . . . 5 (𝑏 ∈ 𝒫 𝒫 𝐴𝑏 ⊆ 𝒫 𝐴)
7 simp1r 1217 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴)
8 ssrab2 3793 . . . . . . . . . . 11 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴
9 simp1l 1216 . . . . . . . . . . . 12 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝐴𝑉)
10 pwexg 4955 . . . . . . . . . . . 12 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
11 elpw2g 4932 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ V → ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴))
129, 10, 113syl 18 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ⊆ 𝒫 𝐴))
138, 12mpbiri 248 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴)
14 simp2 1129 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦))
15 simp3l 1220 . . . . . . . . . . . 12 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ≠ ∅)
16 fin23lem7 9251 . . . . . . . . . . . 12 ((𝐴𝑉𝑏 ⊆ 𝒫 𝐴𝑏 ≠ ∅) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅)
179, 7, 15, 16syl3anc 1439 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅)
18 sorpsscmpl 7065 . . . . . . . . . . . . 13 ( [] Or 𝑏 → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
1918adantl 473 . . . . . . . . . . . 12 ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
20193ad2ant3 1127 . . . . . . . . . . 11 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
2117, 20jca 555 . . . . . . . . . 10 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
22 neeq1 2958 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (𝑦 ≠ ∅ ↔ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅))
23 soeq2 5159 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ( [] Or 𝑦 ↔ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
2422, 23anbi12d 749 . . . . . . . . . . . 12 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ((𝑦 ≠ ∅ ∧ [] Or 𝑦) ↔ ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})))
25 inteq 4586 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → 𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
26 id 22 . . . . . . . . . . . . 13 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → 𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
2725, 26eleq12d 2797 . . . . . . . . . . . 12 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → ( 𝑦𝑦 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
2824, 27imbi12d 333 . . . . . . . . . . 11 (𝑦 = {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ↔ (({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})))
2928rspcv 3409 . . . . . . . . . 10 ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ 𝒫 𝒫 𝐴 → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → (({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})))
3013, 14, 21, 29syl3c 66 . . . . . . . . 9 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏})
31 sorpssint 7064 . . . . . . . . . 10 ( [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
3220, 31syl 17 . . . . . . . . 9 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}))
3330, 32mpbird 247 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧)
34 psseq1 3801 . . . . . . . . 9 (𝑚 = (𝐴𝑧) → (𝑚𝑛 ↔ (𝐴𝑧) ⊊ 𝑛))
35 psseq1 3801 . . . . . . . . 9 (𝑤 = (𝐴𝑛) → (𝑤𝑧 ↔ (𝐴𝑛) ⊊ 𝑧))
36 pssdifcom1 4162 . . . . . . . . 9 ((𝑧𝐴𝑛𝐴) → ((𝐴𝑧) ⊊ 𝑛 ↔ (𝐴𝑛) ⊊ 𝑧))
3734, 35, 36fin23lem11 9252 . . . . . . . 8 (𝑏 ⊆ 𝒫 𝐴 → (∃𝑧 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝑏} ¬ 𝑤𝑧 → ∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛))
387, 33, 37sylc 65 . . . . . . 7 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛)
39 simp3r 1221 . . . . . . . 8 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Or 𝑏)
40 sorpssuni 7063 . . . . . . . 8 ( [] Or 𝑏 → (∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛 𝑏𝑏))
4139, 40syl 17 . . . . . . 7 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑚𝑏𝑛𝑏 ¬ 𝑚𝑛 𝑏𝑏))
4238, 41mpbid 222 . . . . . 6 (((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) ∧ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏𝑏)
43423exp 1112 . . . . 5 ((𝐴𝑉𝑏 ⊆ 𝒫 𝐴) → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
446, 43sylan2 492 . . . 4 ((𝐴𝑉𝑏 ∈ 𝒫 𝒫 𝐴) → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
4544ralrimdva 3071 . . 3 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
46 isfin2 9229 . . 3 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
4745, 46sylibrd 249 . 2 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) → 𝐴 ∈ FinII))
485, 47impbid2 216 1 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103   ≠ wne 2896  ∀wral 3014  ∃wrex 3015  {crab 3018  Vcvv 3304   ∖ cdif 3677   ⊆ wss 3680   ⊊ wpss 3681  ∅c0 4023  𝒫 cpw 4266  ∪ cuni 4544  ∩ cint 4583   Or wor 5138   [⊊] crpss 7053  FinIIcfin2 9214 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-int 4584  df-br 4761  df-opab 4821  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-rpss 7054  df-fin2 9221 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator