Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdisjALTV Structured version   Visualization version   GIF version

Theorem qsdisjALTV 35884
Description: Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.)
Hypotheses
Ref Expression
qsdisjALTV.1 (𝜑 → EqvRel 𝑅)
qsdisjALTV.2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
qsdisjALTV.3 (𝜑𝐶 ∈ (𝐴 / 𝑅))
Assertion
Ref Expression
qsdisjALTV (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))

Proof of Theorem qsdisjALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdisjALTV.2 . 2 (𝜑𝐵 ∈ (𝐴 / 𝑅))
2 eqid 2820 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
3 eqeq1 2824 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = 𝐶𝐵 = 𝐶))
4 ineq1 4174 . . . . 5 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅𝐶) = (𝐵𝐶))
54eqeq1d 2822 . . . 4 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅𝐶) = ∅ ↔ (𝐵𝐶) = ∅))
63, 5orbi12d 915 . . 3 ([𝑥]𝑅 = 𝐵 → (([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅) ↔ (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅)))
7 qsdisjALTV.3 . . . 4 (𝜑𝐶 ∈ (𝐴 / 𝑅))
8 eqeq2 2832 . . . . . 6 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 = [𝑦]𝑅 ↔ [𝑥]𝑅 = 𝐶))
9 ineq2 4176 . . . . . . 7 ([𝑦]𝑅 = 𝐶 → ([𝑥]𝑅 ∩ [𝑦]𝑅) = ([𝑥]𝑅𝐶))
109eqeq1d 2822 . . . . . 6 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅ ↔ ([𝑥]𝑅𝐶) = ∅))
118, 10orbi12d 915 . . . . 5 ([𝑦]𝑅 = 𝐶 → (([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ↔ ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅)))
12 qsdisjALTV.1 . . . . . . 7 (𝜑 → EqvRel 𝑅)
1312ad2antrr 724 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → EqvRel 𝑅)
14 eqvreldisj 35883 . . . . . 6 ( EqvRel 𝑅 → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
1513, 14syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → ([𝑥]𝑅 = [𝑦]𝑅 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
162, 11, 15ectocld 8357 . . . 4 (((𝜑𝑥𝐴) ∧ 𝐶 ∈ (𝐴 / 𝑅)) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
177, 16mpidan 687 . . 3 ((𝜑𝑥𝐴) → ([𝑥]𝑅 = 𝐶 ∨ ([𝑥]𝑅𝐶) = ∅))
182, 6, 17ectocld 8357 . 2 ((𝜑𝐵 ∈ (𝐴 / 𝑅)) → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
191, 18mpdan 685 1 (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1536  wcel 2113  cin 3928  c0 4284  [cec 8280   / cqs 8281   EqvRel weqvrel 35504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-br 5060  df-opab 5122  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ec 8284  df-qs 8288  df-refrel 35786  df-symrel 35814  df-trrel 35844  df-eqvrel 35854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator